Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Javed, Subhan

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Improvement of the Self-Controlled Hyperthermia Applications by Varying Gadolinium Doping in Lanthanum Strontium Manganite Nanoparticles3citations

Places of action

Chart of shared publication
Afzal, Amir Muhammad
1 / 14 shared
Akbar, Hassan
1 / 1 shared
Ali, Asghar
1 / 5 shared
Zada, Imran
1 / 1 shared
Choi, Jeong Ryeol
1 / 3 shared
Muneeb, Muhammad
1 / 7 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Afzal, Amir Muhammad
  • Akbar, Hassan
  • Ali, Asghar
  • Zada, Imran
  • Choi, Jeong Ryeol
  • Muneeb, Muhammad
OrganizationsLocationPeople

article

Improvement of the Self-Controlled Hyperthermia Applications by Varying Gadolinium Doping in Lanthanum Strontium Manganite Nanoparticles

  • Afzal, Amir Muhammad
  • Akbar, Hassan
  • Ali, Asghar
  • Zada, Imran
  • Choi, Jeong Ryeol
  • Muneeb, Muhammad
  • Javed, Subhan
Abstract

<jats:p>In this study, silica-encapsulated gadolinium was doped in lanthanum strontium manganite nanoparticles (NPs) with different concentrations using the citrate–gel auto-combustion method. We focused on tuning the Curie temperature and enhancing the specific absorption rate (SAR) of silica-coated gadolinium-doped lanthanum strontium manganite NPs to make them suitable for self-controlled magnetic hyperthermia. The samples were characterized by using transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and magnetic measurements to examine the structural, optical, and magnetic properties of the manganite NPs. While our results exhibit a successful doping of gadolinium in lanthanum strontium manganite NPs, we further prepared magnetic core NPs with sizes between 20 and 50 nm. The Curie temperature of the NPs declined with increasing gadolinium doping, making them promising materials for hyperthermia applications. The Curie temperature was measured using the magnetization (M-T) curve. Magnetic heating was carried out in an external applied AC magnetic field. Our present work proved the availability of regulating the Curie temperature of gadolinium-doped lanthanum strontium manganite NPs, which makes them promising candidates for self-controlled magnetic hyperthermia applications.</jats:p>

Topics
  • nanoparticle
  • x-ray diffraction
  • Strontium
  • combustion
  • transmission electron microscopy
  • Lanthanum
  • Fourier transform infrared spectroscopy
  • magnetization
  • Gadolinium
  • Curie temperature