People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Afzal, Amir Muhammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Binary metallic sulphide‐based nanocomposites with <scp>ZnO</scp> additives: A dual‐functioning electrode material for energy storage and glucose sensingcitations
- 2024Design and Optimization of MoS2@rGO@NiFeS Nanocomposites for Hybrid Supercapattery Performance and Sensitive Electrochemical Detection
- 2024Synergetic and anomalous effect of <scp>CNTs</scp> in the sulphide‐based binary composite for an extraordinary and asymmetric supercapacitor devicecitations
- 2024Enhanced the Stability and Storage Capability of Sulfide-Based Material With the Incorporation of Carbon Nanotube for High-Performance Supercapattery Devicecitations
- 2024High-performance rGO@CNTs@AgNbS nanocomposite electrode material for hybrid supercapacitor and electrochemical glucose sensorcitations
- 2023Synthesis of CoNbS, PANI@CoNbS, and PANI@AC Composite and Study of the Impact of PANI on the Electrochemical Characteristics of Energy Storage Devicecitations
- 2023High‐Performance and Stable Polyaniline@Niobium Sulfide Electrode for an Asymmetric Supercapacitorcitations
- 2023Exploring the potential of hydrothermally synthesized AgZnS@Polyaniline composites as electrode material for high-performance supercapattery devicecitations
- 2023Composite electrode materials based on nickel cobalt sulfide/carbon nanotubes to enhance the Redox activity for high performance Asymmetric supercapacitor devicescitations
- 2023Improvement of the Self-Controlled Hyperthermia Applications by Varying Gadolinium Doping in Lanthanum Strontium Manganite Nanoparticlescitations
- 2023Synthesis of CNTs Doped Nickel Copper-Sulfides Composite Electrode Material for High-Performance Battery-Supercapacitor Hybrid Devicecitations
- 2023Impact of Holmium and Nickel Substitution on Y-Type Hexagonal Ferrites Synthesized via Sol-gel Methodcitations
- 2022Investigation of Dielectric, Magnetic and Electrical Behavior of BFO/GNPs Nano-Composites Synthesized via Sol-Gel Methodcitations
- 2020Impact of Ho and Ce Ions Substitution on Structural, Electrical, and Dielectric Properties of Ni-Zn Ferritescitations
Places of action
Organizations | Location | People |
---|
article
Improvement of the Self-Controlled Hyperthermia Applications by Varying Gadolinium Doping in Lanthanum Strontium Manganite Nanoparticles
Abstract
<jats:p>In this study, silica-encapsulated gadolinium was doped in lanthanum strontium manganite nanoparticles (NPs) with different concentrations using the citrate–gel auto-combustion method. We focused on tuning the Curie temperature and enhancing the specific absorption rate (SAR) of silica-coated gadolinium-doped lanthanum strontium manganite NPs to make them suitable for self-controlled magnetic hyperthermia. The samples were characterized by using transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and magnetic measurements to examine the structural, optical, and magnetic properties of the manganite NPs. While our results exhibit a successful doping of gadolinium in lanthanum strontium manganite NPs, we further prepared magnetic core NPs with sizes between 20 and 50 nm. The Curie temperature of the NPs declined with increasing gadolinium doping, making them promising materials for hyperthermia applications. The Curie temperature was measured using the magnetization (M-T) curve. Magnetic heating was carried out in an external applied AC magnetic field. Our present work proved the availability of regulating the Curie temperature of gadolinium-doped lanthanum strontium manganite NPs, which makes them promising candidates for self-controlled magnetic hyperthermia applications.</jats:p>