People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duquet, Fanny
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Hybrid Photoelectrocatalytic TiO2-Co3O4/Co(OH)2 Materials Prepared from Bio-Based Surfactants for Water Splitting
Abstract
International audience ; The development of new photoanode materials for hydrogen production and water treatment is in full progress. In this context, hybrid TiO2-Co3O4/Co(OH)2 photoanodes prepared using the sol–gel method using biosurfactants are currently being developed by our group. The combination of TiO2 with a cobalt-based compound significantly enhances the visible absorption and electrochemical performance of thin films, which is mainly due to an increase in the specific surface area and a decrease in the charge transfer resistance on the surface of the thin films. The formation of these composites allows for a 30-fold increase in the current density when compared to cobalt-free materials, with the best TiO2-CoN0.5 sample achieving a current of 1.570 mA.cm−2 and a theoretical H2 production rate of 0.3 µmol.min−1.cm−2 under xenon illumination.