Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eid, Salah

  • Google
  • 2
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Novel Imine-Tethering Cationic Surfactants: Synthesis, Surface Activity, and Investigation of the Corrosion Mitigation Impact on Carbon Steel in Acidic Chloride Medium via Various Techniques3citations
  • 2023Evaluation of the Impact of Two Thiadiazole Derivatives on the Dissolution Behavior of Mild Steel in Acidic Environments6citations

Places of action

Chart of shared publication
Abo-Riya, Mohamed A.
1 / 1 shared
Soliman, Kamal A.
1 / 1 shared
Tantawy, Ahmed H.
1 / 2 shared
Hashem, Nady
1 / 1 shared
El-Nasser, Karam S.
1 / 1 shared
Althobaiti, Ibrahim O.
1 / 1 shared
Salama, Eid Eissa
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abo-Riya, Mohamed A.
  • Soliman, Kamal A.
  • Tantawy, Ahmed H.
  • Hashem, Nady
  • El-Nasser, Karam S.
  • Althobaiti, Ibrahim O.
  • Salama, Eid Eissa
OrganizationsLocationPeople

article

Evaluation of the Impact of Two Thiadiazole Derivatives on the Dissolution Behavior of Mild Steel in Acidic Environments

  • Hashem, Nady
  • El-Nasser, Karam S.
  • Althobaiti, Ibrahim O.
  • Eid, Salah
  • Salama, Eid Eissa
Abstract

In light of the variety of industrial uses and economic relevance of mild steel, corrosion resistance is a serious topic. Utilization of inhibitors serves as one of the most essential methods for corrosion control. Two thiadiazole compounds, namely, 2-amino-5-(4-bromobenzyl)-1,3,4-thiadiazole (a1) and 2-amino-5-(3-nitrophenyl)-1,3,4-thiadiazole (a2), were synthesized. The structure of the prepared compounds was verified by Fourier transform infrared spectroscopy (FTIR) and proton and carbon-13 nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR). In a 0.50 M H2SO4 solution, the effectiveness of two synthetic thiadiazole derivatives as mild steel corrosion inhibitors were investigated. In this evaluation, various electrochemical methodologies have been utilized, such as potentiodynamic polarization, open circuit potential (OCP), and electrochemical impedance spectroscopy (EIS). The results confirm the efficiency of the inhibition increases by raising concentrations of a1 and a2. The inhibitory behavior was explained by the notion that the adsorption of thiadiazole molecules, a1 and a2, on the surface of mild steel causes a blockage of charge and mass transfer, protecting the mild steel from offensive ions. Furthermore, the synthesized molecules a1 and a2 were analyzed using density functional theory (DFT).

Topics
  • density
  • surface
  • compound
  • Carbon
  • corrosion
  • theory
  • steel
  • density functional theory
  • electrochemical-induced impedance spectroscopy
  • Nuclear Magnetic Resonance spectroscopy
  • Fourier transform infrared spectroscopy