Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Degryse, Olivier

  • Google
  • 1
  • 8
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Pedot:PSS/Graphene Oxide (GO) Ternary Nanocomposites for Electrochemical Applications11citations

Places of action

Chart of shared publication
Rizzo, Aurora
1 / 38 shared
Bagheri, Sonia
1 / 3 shared
Mele, Claudio
1 / 24 shared
Ferraris, Eleonora
1 / 17 shared
Esposito Corcione, Carola
1 / 36 shared
Greco, Giuseppe
1 / 6 shared
Seiti, Miriam
1 / 1 shared
Giuri, Antonella
1 / 24 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rizzo, Aurora
  • Bagheri, Sonia
  • Mele, Claudio
  • Ferraris, Eleonora
  • Esposito Corcione, Carola
  • Greco, Giuseppe
  • Seiti, Miriam
  • Giuri, Antonella
OrganizationsLocationPeople

article

Pedot:PSS/Graphene Oxide (GO) Ternary Nanocomposites for Electrochemical Applications

  • Rizzo, Aurora
  • Bagheri, Sonia
  • Mele, Claudio
  • Ferraris, Eleonora
  • Degryse, Olivier
  • Esposito Corcione, Carola
  • Greco, Giuseppe
  • Seiti, Miriam
  • Giuri, Antonella
Abstract

<jats:p>Among conductive polymers, poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has been widely used as an electrode material for supercapacitors, solar cells, sensors, etc. Although PEDOT:PSS-based thin films have acceptable properties such as good capacitive and electrical behaviour and biocompatibility, there are still several challenges to be overcome in their use as an electrode material for supercapacitors. For this reason, the aim of this work is to fabricate and characterise ternary nanocomposites based on PEDOT:PSS and graphene oxide (GO), blended with green additives (glucose (G) or ascorbic acid (AA)), which have the benefits of being environmentally friendly, economical, and easy to use. The GO reduction process was first accurately investigated and demonstrated by UV-Vis and XRD measurements. Three-component inks have been developed, and their morphological, rheological, and surface tension properties were evaluated, showing their printability by means of Aerosol Jet® Printing (AJ®P), an innovative direct writing technique belonging to the Additive Manufacturing (AM) for printed electronics applications. Thin films of the ternary nanocomposites were produced by drop casting and spin coating techniques, and their capacitive behaviour and chemical structures were evaluated through Cyclic Voltammetry (CV) tests and FT-IR analyses. CV tests show an increment in the specific capacitance of AAGO-PEDOT up to 31.4 F/g and excellent overtime stability compared with pristine PEDOT:PSS, suggesting that this ink can be used to fabricate supercapacitors in printed (bio)-electronics. The inks were finally printed by AJ®P as thin films (10 layers, 8 × 8 mm) and chemically analysed by FT-IR, demonstrating that all components of the formulation were successfully aerosolised and deposited on the substrate.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • x-ray diffraction
  • thin film
  • casting
  • additive manufacturing
  • cyclic voltammetry
  • biocompatibility
  • spin coating