Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hisaindee, Soleiman

  • Google
  • 2
  • 9
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Development and Evaluation of Crocetin-Functionalized Pegylated Magnetite Nanoparticles for Hepatocellular Carcinoma14citations
  • 2022Sonochemical synthesis of ZnCo<sub>2</sub>O<sub>4</sub>/Ag<sub>3</sub>PO<sub>4</sub> heterojunction photocatalysts for the degradation of organic pollutants and pathogens: a combined experimental and computational study11citations

Places of action

Chart of shared publication
Abdel-Ghany, Ashraf
1 / 2 shared
El-Maghraby, H. F.
1 / 1 shared
Greish, Yaser
1 / 1 shared
Ibrahim, Sulafa
1 / 1 shared
Baig, Badriya
1 / 1 shared
Taha, Muhammad
1 / 1 shared
Ansari, Mohammad Azam
1 / 2 shared
Hakeem, Abbas Saeed
1 / 14 shared
Ul-Hamid, Anwar
1 / 10 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Abdel-Ghany, Ashraf
  • El-Maghraby, H. F.
  • Greish, Yaser
  • Ibrahim, Sulafa
  • Baig, Badriya
  • Taha, Muhammad
  • Ansari, Mohammad Azam
  • Hakeem, Abbas Saeed
  • Ul-Hamid, Anwar
OrganizationsLocationPeople

article

Development and Evaluation of Crocetin-Functionalized Pegylated Magnetite Nanoparticles for Hepatocellular Carcinoma

  • Abdel-Ghany, Ashraf
  • Hisaindee, Soleiman
  • El-Maghraby, H. F.
  • Greish, Yaser
  • Ibrahim, Sulafa
  • Baig, Badriya
Abstract

<jats:p>Liver cancer remains among the leading causes of cancer-related deaths worldwide. This is due to many reasons, including limitations of available drugs, late diagnosis due to the overlapping symptoms with many other liver diseases, and lack of effective screening modalities. Compared to conventional chemotherapy, targeted drug delivery systems are advantageous in many ways, as they minimize drug resistance and improve therapeutic value for cancer patients. Nanomaterials, in general, and nanoparticles, in particular, possess nm size, which provides a high surface area for a great extent of functionalization to be used for the targeted delivery of cancer drugs. Amongst the different formulations of nanoparticles, magnetic nanoparticles (MNPs) have unique chemical and physical characteristics and magnetic behavior, making them preferable candidates as a core for drug delivery systems. To maintain the nanosized structure of MNPs, a polymeric coating is usually applied to maintain the nanoparticles dispersed in the solution. Moreover, the polymeric coating provides a plate form for carrying drug molecules on its surface. In the present study, poly(ethylene glycol) (PEG)-coated MNPs were successfully synthesized, where the optimum concentration of PEG on the surface of the MNPs was investigated. The PEG-coated MNPs were further coated with crocetin at different concentrations. The crocetin-coated pegylated MNPs were evaluated in vitro using a hepatic cell line (HepG2) for up to 72 h. Results showed good release kinetics under acidic and neutral conditions. The optimally prepared drug delivery system showed a high potential for reducing the HepG2 cell proliferation in vitro using an MTT assay. The calculated IC50 for Cro-PEG-MNPs were 0.1019, 0.0903, and 0.0462 mg/mL of 5×, 10× and 20×, respectively.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • functionalization