Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sequeira, Sílvia

  • Google
  • 1
  • 9
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Study of the Materials and Techniques of a Rare Papier-Mâché Mushroom Model Crafted in H. Arnoldi Factory1citations

Places of action

Chart of shared publication
Lourenço, Mónica
1 / 1 shared
Melo, Maria J.
1 / 4 shared
Nabais, Paula
1 / 2 shared
Freitas, Ana
1 / 2 shared
Correia, Ana Rita
1 / 1 shared
Vieira, Cristiana
1 / 1 shared
Oliveira, Gabriel
1 / 1 shared
Vilarigues, Márcia
1 / 5 shared
Vieira, Márcia
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lourenço, Mónica
  • Melo, Maria J.
  • Nabais, Paula
  • Freitas, Ana
  • Correia, Ana Rita
  • Vieira, Cristiana
  • Oliveira, Gabriel
  • Vilarigues, Márcia
  • Vieira, Márcia
OrganizationsLocationPeople

article

Study of the Materials and Techniques of a Rare Papier-Mâché Mushroom Model Crafted in H. Arnoldi Factory

  • Lourenço, Mónica
  • Sequeira, Sílvia
  • Melo, Maria J.
  • Nabais, Paula
  • Freitas, Ana
  • Correia, Ana Rita
  • Vieira, Cristiana
  • Oliveira, Gabriel
  • Vilarigues, Márcia
  • Vieira, Márcia
Abstract

The Natural History and Science Museum of the University of Porto houses a collection of 45 models of fungi in papier-mâché from the 19th-century, which were used at the university until 2015 as didactic models. For the first time, the materials and techniques used in the production of a Boletus edulis model were studied (vernacular name: cep, porcini). These sculptures, made to life-size scale, are painted in colors similar to those of the represented species (white, brown, and light brown). They are fixed to a rectangular base, which is painted black, and to which moss has been pasted. To fully characterize each color, at the molecular level, a multi-analytical approach was used, combining energy-dispersive x-ray fluorescence spectroscopy (micro-XRF) with fingerprinting techniques of Raman microscopy (microRaman and handheld Raman) spectroscopy and microFourier transform infrared spectroscopy (microFTIR). The papier-mâché was prepared with a groundwood paper to which kaolin and a quartz-based material have been added to reinforce the structure. Raman microscopy also identified carbon black in it, which is possibly responsible for its grey color. The white color was unequivocally identified as lithopone by microRaman. This white paint was prepared in a proteinaceous tempera, with calcium carbonate having been identified as filler (by microFTIR). In the brown color, iron was identified by microXRF, pointing to the use of ocher, which was not possible to identify by microRaman and microFTIR. Regarding the black rectangular base, the moss was fixed using a collagen-based glue. The binding medium in this black is possibly a mixture of drying oil and protein. Again, XRF detected iron as the main element, but it was not possible to acquire a Raman spectrum due to the high fluorescence of the binder/varnish. Others, such as the writing inks, will also be discussed. The colors identified are in line with the best materials available for use by artists of that time. This new knowledge is fundamental to informing the choice of the best conservation strategies for the preservation of these extraordinary models.

Topics
  • impedance spectroscopy
  • Carbon
  • iron
  • Calcium
  • drying
  • infrared spectroscopy
  • fluorescence spectroscopy
  • X-ray fluorescence spectroscopy
  • Raman microscopy