Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Valera, Miguel Ángel

  • Google
  • 1
  • 7
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactide9citations

Places of action

Chart of shared publication
Bikiaris, Dimitrios N.
1 / 71 shared
Klonos, Panagiotis A.
1 / 6 shared
Terzopoulou, Zoi
1 / 16 shared
Kyritsis, Apostolos
1 / 16 shared
Evangelopoulou, Alexandra
1 / 1 shared
Mangas, Ana
1 / 4 shared
Zamboulis, Alexandra
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bikiaris, Dimitrios N.
  • Klonos, Panagiotis A.
  • Terzopoulou, Zoi
  • Kyritsis, Apostolos
  • Evangelopoulou, Alexandra
  • Mangas, Ana
  • Zamboulis, Alexandra
OrganizationsLocationPeople

document

Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactide

  • Bikiaris, Dimitrios N.
  • Klonos, Panagiotis A.
  • Terzopoulou, Zoi
  • Kyritsis, Apostolos
  • Evangelopoulou, Alexandra
  • Mangas, Ana
  • Zamboulis, Alexandra
  • Valera, Miguel Ángel
Abstract

This work deals with molecular mobility in renewable block copolymers based on polylactide (PLA) and poly(propylene adipate) (PPAd). In particular, we assess non-trivial effects on the mobility arising from the implementation of crystallization. Differential scanning calorimetry, polarized light microscopy and broadband dielectric spectroscopy were employed in combination for this study. The materials were subjected to various thermal treatments aiming at the manipulation of crystallization, namely, fast and slow cooling, isothermal melt- and cold-crystallization. Subsequently, we evaluated the changes recorded in the overall thermal behavior, semicrystalline morphology and molecular mobility (segmental and local). The molecular dynamics map for neat PPAd is presented here for the first time. Unexpectedly, the glass transition temperature, Tg, in the amorphous state drops upon crystallization by 8–50 K. The drop becomes stronger with the increase in the PPAd fraction. Compared to the amorphous state, crystallization leads to significantly faster segmental dynamics with severely suppressed cooperativity. For the PLA/PPAd copolymers, the effects are systematically stronger in the cold- as compared to the melt-crystallization, whereas the opposite happens for neat PLA. The local βPLA relaxation of PLA was, interestingly, recorded to almost vanish upon crystallization. This suggests that the corresponding molecular groups (carbonyl) are strongly involved and immobilized within the semicrystalline regions. The overall results suggest the involvement of either spatial nanoconfinement imposed on the mobile chains within the inter-crystal amorphous areas and/or a crystallization-driven effect of nanophase separation. The latter phase separation seems to be at the origins of the significant discrepancy recorded between the calorimetric and dielectric recordings on Tg in the copolymers. Once again, compared to more conventional techniques such as calorimetry, dielectric spectroscopy was proved a powerful and quite ...

Topics
  • impedance spectroscopy
  • amorphous
  • mobility
  • melt
  • glass
  • glass
  • molecular dynamics
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • copolymer
  • block copolymer
  • crystallization
  • crystallinity
  • Polarized light microscopy
  • semicrystalline