People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zamboulis, Alexandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbidecitations
- 2024Preparation and Characterisation of High-Density Polyethylene/Tannic Acid Composites
- 2022Poly(vinyl pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Propertiescitations
- 2022Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactidecitations
- 2021Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)- co -Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusion
- 2021Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannincitations
- 2021Cold Crystallization Kinetics and Thermal Degradation of PLA Composites with Metal Oxide Nanofillerscitations
- 2021Synthesis, Properties, and Enzymatic Hydrolysis of Poly(lactic acid)-co-Poly(propylene adipate) Block Copolymers Prepared by Reactive Extrusioncitations
- 2019Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applicationscitations
Places of action
Organizations | Location | People |
---|
document
Revisiting Non-Conventional Crystallinity-Induced Effects on Molecular Mobility in Sustainable Diblock Copolymers of Poly(propylene adipate) and Polylactide
Abstract
This work deals with molecular mobility in renewable block copolymers based on polylactide (PLA) and poly(propylene adipate) (PPAd). In particular, we assess non-trivial effects on the mobility arising from the implementation of crystallization. Differential scanning calorimetry, polarized light microscopy and broadband dielectric spectroscopy were employed in combination for this study. The materials were subjected to various thermal treatments aiming at the manipulation of crystallization, namely, fast and slow cooling, isothermal melt- and cold-crystallization. Subsequently, we evaluated the changes recorded in the overall thermal behavior, semicrystalline morphology and molecular mobility (segmental and local). The molecular dynamics map for neat PPAd is presented here for the first time. Unexpectedly, the glass transition temperature, Tg, in the amorphous state drops upon crystallization by 8–50 K. The drop becomes stronger with the increase in the PPAd fraction. Compared to the amorphous state, crystallization leads to significantly faster segmental dynamics with severely suppressed cooperativity. For the PLA/PPAd copolymers, the effects are systematically stronger in the cold- as compared to the melt-crystallization, whereas the opposite happens for neat PLA. The local βPLA relaxation of PLA was, interestingly, recorded to almost vanish upon crystallization. This suggests that the corresponding molecular groups (carbonyl) are strongly involved and immobilized within the semicrystalline regions. The overall results suggest the involvement of either spatial nanoconfinement imposed on the mobile chains within the inter-crystal amorphous areas and/or a crystallization-driven effect of nanophase separation. The latter phase separation seems to be at the origins of the significant discrepancy recorded between the calorimetric and dielectric recordings on Tg in the copolymers. Once again, compared to more conventional techniques such as calorimetry, dielectric spectroscopy was proved a powerful and quite ...