People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Al-Anazy, Murefah Mana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Studycitations
- 2023Synthesis of novel biodegradable starch-PMA and Ag@starch-PMA polymer composite for boosting charge separation ability and superior photocatalytic performancecitations
- 2022Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Studycitations
- 2022Integration of Mn-ZnFe2O4 with S-g-C3N4 for Boosting Spatial Charge Generation and Separation as an Efficient Photocatalystcitations
- 2021Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging applicationcitations
- 2021Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiationscitations
- 2021Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiationcitations
Places of action
Organizations | Location | People |
---|
article
Magnetic, Electronic, and Optical Studies of Gd-Doped WO3: A First Principle Study
Abstract
<jats:p>Tungsten trioxide (WO3) is mainly studied as an electrochromic material and received attention due to N-type oxide-based semiconductors. The magnetic, structural, and optical behavior of pristine WO3 and gadolinium (Gd)-doped WO3 are being investigated using density functional theory. For exchange-correlation potential energy, generalized gradient approximation (GGA+U) is used in our calculations, where U is the Hubbard potential. The estimated bandgap of pure WO3 is 2.5 eV. After the doping of Gd, some states cross the Fermi level, and WO3 acts as a degenerate semiconductor with a 2 eV bandgap. Spin-polarized calculations show that the system is antiferromagnetic in its ground state. The WO3 material is a semiconductor, as there is a bandgap of 2.5 eV between the valence and conduction bands. The Gd-doped WO3’s band structure shows few states across the Fermi level, which means that the material is metal or semimetal. After the doping of Gd, WO3 becomes the degenerate semiconductor with a bandgap of 2 eV. The energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) configurations is negative, so the Gd-doped WO3 system is AFM. The pure WO3 is nonmagnetic, where the magnetic moment in the system after doping Gd is 9.5599575 μB.</jats:p>