People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Qamar, Muhammad Azam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Sunlight-active, S-g-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradationcitations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Harnessing solar power for enhanced photocatalytic degradation of coloured pollutants using novel Mg-doped-ZnFe2O4/S@g-C3N4 heterojunctioncitations
- 2023Synthesis of Mn-Doped ZnO Nanoparticles and Their Application in the Transesterification of Castor Oil
- 2022Fabrication of Cr-ZnFe2O4/S-g-C3N4 Heterojunction Enriched Charge Separation for Sunlight Responsive Photocatalytic Performance and Antibacterial Studycitations
- 2022Synthesis of Cu-ZnO/Polyacrylic Acid Hydrogel as Visible-Light-Driven Photocatalyst for Organic Pollutant Degradationcitations
- 2022Integration of Mn-ZnFe2O4 with S-g-C3N4 for Boosting Spatial Charge Generation and Separation as an Efficient Photocatalystcitations
- 2022Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgelcitations
- 2021Designing of highly active g-C3N4/Co@ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible lightcitations
- 2021Designing highly potential photocatalytic comprising silver deposited ZnO NPs with sulfurized graphitic carbon nitride (Ag/ZnO/S-g-C3N4) ternary compositecitations
- 2021Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light-driven methylene blue degradation and antibacterial activitiescitations
- 2021Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiationscitations
- 2021Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applicationscitations
- 2021Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiationscitations
- 2021Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiationcitations
- 2020Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activitycitations
- 2020Controlled synthesis of Ag-doped CuO nanoparticles as a core with poly(acrylic acid) microgel shell for efficient removal of methylene blue under visible lightcitations
Places of action
Organizations | Location | People |
---|
article
Integration of Mn-ZnFe2O4 with S-g-C3N4 for Boosting Spatial Charge Generation and Separation as an Efficient Photocatalyst
Abstract
<jats:p>The disposal of dyes and organic matter into water bodies has become a significant source of pollution, posing health risks to humans worldwide. With rising water demands and dwindling supplies, these harmful compounds must be isolated from wastewater and kept out of the aquatic environment. In the research presented here, hydrothermal synthesis of manganese-doped zinc ferrites’ (Mn-ZnFe2O4) nanoparticles (NPs) and their nanocomposites (NCs) with sulfur-doped graphitic carbon nitride (Mn-ZnFe2O4/S-g-C3N4) are described. The samples’ morphological, structural, and bonding features were investigated using SEM, XRD, and FTIR techniques. A two-phase photocatalytic degradation study of (0.5, 1, 3, 5, 7, 9, and 11 wt.%) Mn-doped ZnFe2O4 NPs and Mn-ZnFe2O4/(10, 30, 50, 60, and 70 wt.%) S-g-C3N4 NCs against MB was carried out to find the photocatalyst with maximum efficiency. The 9% Mn-ZnFe2O4 NPs and Mn-ZnFe2O4/50% S-g-C3N4 NCs exhibited the best photocatalyst efficiency in phase one and phased two, respectively. The enhanced photocatalytic activity of the Mn-ZnFe2O4/50% S-g-C3N4 NCs could be attributed to synergistic interactions at the Mn-ZnFe2O4/50% S-g-C3N4 NCs interface that resulted in a more effective transfer and separation of photo-induced charges. Therefore, it is efficient, affordable, and ecologically secure to modify ZnFe2O4 by doping with Mn and homogenizing with S-g-C3N4. As a result, our current research suggests that the synthetic ternary hybrid Mn-ZnFe2O4/50% S-g-C3N4 NCs may be an effective photocatalytic system for degrading organic pollutants from wastewater.</jats:p>