People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruno, Annalisa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlookcitations
- 2023Asynchronous Charge Carrier Injection in Perovskite Light-Emitting Transistorscitations
- 2023Light-emitting field-effect transistors (LET) based on metal halide perovskitescitations
- 2022Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguidescitations
- 2022Amplified spontaneous emission threshold dependence on determination method in dye-doped polymer and lead halide perovskite waveguidescitations
- 2020Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cellscitations
- 2020Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stabilitycitations
- 2018Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectorscitations
- 2016X-ray Scintillation in Lead Halide Perovskite Crystalscitations
- 2013Preparation and characterization of novel nanocomposites of WS2nanotubes and polyfluorene conductive polymercitations
- 2013Microscopic and spectroscopic investigation of MoS2nanotubes/P3HT nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides
Abstract
<jats:p>Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.</jats:p>