Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohammed, Jabair Ali

  • Google
  • 4
  • 7
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Stress Corrosion Cracking Behavior of Fine-Grained Al5083 Alloys Processed by Equal-Channel Angular Pressing (ECAP)4citations
  • 2021Microstructure Evaluation Study of Al5083 Alloy Using EBSD Technique after Processing with Different ECAP Processes and Temperatures4citations
  • 2021Electrochemical Corrosion Behavior of Laser Welded 2205 Duplex Stainless-Steel in Artificial Seawater Environment under Different Acidity and Alkalinity Conditions21citations
  • 2021Mitigating Corrosion Effects of Ti-48Al-2Cr-2Nb Alloy Fabricated via Electron Beam Melting (EBM) Technique by Regulating the Immersion Conditions18citations

Places of action

Chart of shared publication
Hashmi, Faraz Hussain
2 / 4 shared
Seikh, Asiful
4 / 9 shared
Rehman, Ateekh Ur
2 / 10 shared
Ragab, Sameh Mohamed
1 / 1 shared
Abdo, Hany S.
2 / 18 shared
Samad, Ubair Abdus
2 / 6 shared
Ragab, Sameh A.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hashmi, Faraz Hussain
  • Seikh, Asiful
  • Rehman, Ateekh Ur
  • Ragab, Sameh Mohamed
  • Abdo, Hany S.
  • Samad, Ubair Abdus
  • Ragab, Sameh A.
OrganizationsLocationPeople

article

Stress Corrosion Cracking Behavior of Fine-Grained Al5083 Alloys Processed by Equal-Channel Angular Pressing (ECAP)

  • Hashmi, Faraz Hussain
  • Seikh, Asiful
  • Mohammed, Jabair Ali
  • Rehman, Ateekh Ur
Abstract

<jats:p>In the present study, the stress corrosion cracking (SCC) behavior of ECAP Al5083 alloy was investigated in air as well as in 3.5 % NaCl solution using the slow strain rate tensile test (SSRT). The characteristics of grain boundary precipitates (GBPs), specifically the microchemistry of the SCC behavior of Al5083 alloys, both in “as-received” condition and when deformed by the ECAP process, were examined. The correlations between the SCC resistance and GBP microchemistry were examined. A microstructural evaluation was performed using an optical microscope. SCC tests were carried out using a universal tensile testing machine and the fracture surfaces were studied using scanning electron microscopy (SEM). A strain rate of 1×10−6 s−1 was applied for the SSRT. As the passes increased, the SCC susceptibility of the fine-grained ECAP Al5083 alloy also increased. Moreover, higher ultimate tensile strength and greater elongation were observed. This was due to grain refinement, high-density separations, and the expanded extent of high-density dislocations instigated by severe plastic deformation. Due to the high strength and elongation, the failure analysis showed a ductile mode of fracture. Electron backscattering diffraction (EBSD) analysis was performed to determine more clearly the nature of cracking. EBSD analysis showed that the crack propagation occurred in both transgranular and intergranular modes.</jats:p>

Topics
  • density
  • surface
  • polymer
  • grain
  • grain boundary
  • scanning electron microscopy
  • crack
  • strength
  • dislocation
  • precipitate
  • tensile strength
  • electron backscatter diffraction
  • susceptibility
  • stress corrosion