People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Biancalana, Lorenzo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Mixed valence triiron complexes from the conjugation of [FeIFeI] and [FeII] complexes via intermolecular carbyne/alkyne couplingcitations
- 2021A Comprehensive Analysis of the Metal–Nitrile Bonding in an Organo-Diiron Systemcitations
- 2020Mono-, Di- and Tetra-iron Complexes with Selenium or Sulphur Functionalized Vinyliminium Ligands: Synthesis, Structural Characterization and Antiproliferative Activitycitations
- 2018Cascade Reactions of α-Phenylcinnamic Acid to Polycyclic Compounds Promoted by High Valent Transition Metal Halidescitations
Places of action
Organizations | Location | People |
---|
article
A Comprehensive Analysis of the Metal–Nitrile Bonding in an Organo-Diiron System
Abstract
<jats:p>Nitriles (N≡CR) are ubiquitous in coordination chemistry, yet literature studies on metal–nitrile bonding based on a multi-technique approach are rare. We selected an easily-available di-organoiron framework, containing both π-acceptor (CO, aminocarbyne) and donor (Cp = η5−C5H5) ligands, as a suitable system to provide a comprehensive description of the iron–nitrile bond. Thus, the new nitrile (2–12)CF3SO3 and the related imine/amine complexes (8–9)CF3SO3 were synthesized in 58–83% yields from the respective tris-carbonyl precursors (1a–d)CF3SO3, using the TMNO strategy (TMNO = trimethylamine-N-oxide). The products were fully characterized by elemental analysis, IR (solution and solid state) and multinuclear NMR spectroscopy. In addition, the structures of (2)CF3SO3, (3)CF3SO3, (5)CF3SO3 and (11)CF3SO3 were ascertained by single crystal X-ray diffraction. Salient spectroscopic data of the nitrile complexes are coherent with the scale of electron-donor power of the R substituents; otherwise, this scale does not match the degree of Fe → N π-back-donation and the Fe–N bond energies, which were elucidated in (2–7)CF3SO3 by DFT calculations.</jats:p>