People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Immonen, Kirsi
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2025A skeletonization-based approach for individual fiber separation in tomography images of biocomposites
- 2024Effect of unbleached and bleached softwood cellulose pulp fibers on poly(lactic acid) propertiescitations
- 2024Biocomposites through foam-forming of long fiber suspensions
- 2023Effect of accelerated aging on properties of biobased polymer films applicable in printed electronicscitations
- 2022Recycling of 3D Printable Thermoplastic Cellulose-Compositecitations
- 2022Biocomposite modeling by tomographic feature extraction and synthetic microstructure reconstructioncitations
- 2022Novel Cellulose based Composite Material for Thermoplastic processing
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Oriented and annealed poly(lactic acid) films and their performance in flexible printed and hybrid electronicscitations
- 2021Thermoplastic Cellulose-Based Compound for Additive Manufacturingcitations
- 2020Feasibility of foam forming technology for producing wood plastic compositescitations
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Impact of stone ground 'V-fines' dispersion and compatibilization on polyethylene wood plastic composites
- 2020Poly(lactic acid)/pulp fiber compositescitations
- 2020Poly(lactic acid)/pulp fiber composites:The effect of fiber surface modification and hydrothermal aging on viscoelastic and strength propertiescitations
- 2019Material sorting using hyperspectral imaging for biocomposite recycling
- 2018Modelling of hygroexpansion in birch pulp - PLA composites
- 2018Modelling of hygroexpansion in birch pulp - PLA composites:A numerical approach based on X-ray micro-tomography
- 2018Totally bio-based, high-performance wood fibre biocomposites
- 2017Effects of Surfactants on the Preparation of Nanocellulose-PLA Compositescitations
- 2016Predicting stiffness and strength of birch pulp : polylactic acid compositescitations
- 2016Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite materialcitations
- 2016Highly porous fibre structures and biocomposites made of mixtures of wood, biopolymers and hemp
- 2016Predicting stiffness and strength of birch pulp:Polylactic acid compositescitations
- 2016Predicting stiffness and strength of birch pulp – Polylactic acid compositescitations
- 2015Improving mechanical properties of novel flax/tannin composites through different chemical treatmentscitations
- 2015Novel hybrid flax reinforced supersap composites in automotive applicationscitations
- 2011Potential of chemo- enzymatically modified CTMP in biocomposites
- 2011Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matricescitations
Places of action
Organizations | Location | People |
---|
article
Thermoplastic Cellulose-Based Compound for Additive Manufacturing
Abstract
The increasing environmental awareness is driving towards novel sustainable high-performance materials applicable for future manufacturing technologies like additive manufacturing (AM). Cellulose is abundantly available renewable and sustainable raw material. This work focused on studying the properties of thermoplastic cellulose-based composites and their properties using injection molding and 3D printing of granules. The aim was to maximize the cellulose content in composites. Different compounds were prepared using cellulose acetate propionate (CAP) and commercial cellulose acetate propionate with plasticizer (CP) as polymer matrices, microcellulose (mc) and novel cellulose-ester additives; cellulose octanoate (C8) and cellulose palmitate (C16). The performance of compounds was compared to a commercial poly(lactic acid)-based cellulose fiber containing composite. As a result, CP-based compounds had tensile and Charpy impact strength properties comparable to commercial reference, but lower modulus. CP-compounds showed glass transition temperature (Tg) over 58% and heat distortion temperature (HDT) 12% higher compared to reference. CAP with C16 had HDT 82.1 °C. All the compounds were 3D printable using granular printing, but CAP compounds had challenges with printed layer adhesion. This study shows the potential to tailor thermoplastic cellulose-based composite materials, although more research is needed before obtaining all-cellulose 3D printable composite material with high-performance.