People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Celiński, Maciej
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022The Effect of Manufacture Process on Mechanical Properties and Burning Behavior of Epoxy-Based Hybrid Compositescitations
- 2021Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxidecitations
- 2021Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Compositescitations
- 2021Moisture Resistance, Thermal Stability and Fire Behavior of Unsaturated Polyester Resin Modified with L-histidinium Dihydrogen Phosphate-Phosphoric Acidcitations
- 2020Fire behavior of flame retarded unsaturated polyester resin with high nitrogen content additivescitations
- 2019Flammability Assessment of an Intumescent Flame Retardant Thermoplastic Polymer
- 2019The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-compositescitations
- 2019Thermal Stability, Fire and Smoke Behaviour of Epoxy Composites Modified with Plant Waste Fillerscitations
- 2018Thermal stability, fire behavior, and fumes emission of polyethylene nanocomposites with halogen-free fire retardantscitations
Places of action
Organizations | Location | People |
---|
article
Moisture Resistance, Thermal Stability and Fire Behavior of Unsaturated Polyester Resin Modified with L-histidinium Dihydrogen Phosphate-Phosphoric Acid
Abstract
<jats:p>In this paper, the fire behavior of unsaturated polyester resin (UP) modified with L-histidinium dihydrogen phosphate-phosphoric acid (LHP), being a novel intumescent fire retardant (IFR), was investigated. Thermal and thermomechanical properties of the UP with different amounts of LHP (from 10 to 30 wt. %) were determined by thermogravimetric analysis (TG) as well as dynamic mechanical thermal analysis (DMTA). Reaction to small flames was studied by horizontal burning (HB) test, while fire behavior and smoke emission were investigated with the cone calorimeter (CC) and smoke density chamber. Further, the analysis of volatile products was conducted (TGA/FT-IR). It was observed that the addition of LHP resulted in the formation of carbonaceous char inhibiting the thermal decomposition, burning rate and smoke emission. The most promising results were obtained for the UP containing 30 wt. % of LHP, for which the highest reduction in maximum values of heat release rate (200 kW/m2) and total smoke release (3535 m2/m2) compared to unmodified polymer (792 kW/m2 and 6895 m2/m2) were recorded. However, some important disadvantage with respect to water resistance was observed.</jats:p>