Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shakiba, Mohamadreza

  • Google
  • 3
  • 11
  • 105

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Thermal Degradation Kinetics and Modeling Study of Ultra High Molecular Weight Polyethylene (UHMWP)/Graphene Nanocomposite20citations
  • 2021Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite70citations
  • 2021Kinetic Modeling and Degradation Study of Liquid Polysulfide Resin-Clay Nanocomposite15citations

Places of action

Chart of shared publication
A., Ahmad Ramazani S.
1 / 9 shared
Khosravi, Fatemeh
2 / 3 shared
Abasi, Ehsan
1 / 1 shared
Moradi, Omid
1 / 2 shared
Teo, Ying Shen
1 / 1 shared
Faraji, Mehdi
1 / 1 shared
Emadi, Hamid
1 / 1 shared
Nabavi, Seyed Reza
1 / 3 shared
Zarei, Davood
1 / 1 shared
Shafiei-Navid, Saeid
1 / 2 shared
Kakoei, Arash
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • A., Ahmad Ramazani S.
  • Khosravi, Fatemeh
  • Abasi, Ehsan
  • Moradi, Omid
  • Teo, Ying Shen
  • Faraji, Mehdi
  • Emadi, Hamid
  • Nabavi, Seyed Reza
  • Zarei, Davood
  • Shafiei-Navid, Saeid
  • Kakoei, Arash
OrganizationsLocationPeople

article

Kinetic Modeling and Degradation Study of Liquid Polysulfide Resin-Clay Nanocomposite

  • Zarei, Davood
  • Shafiei-Navid, Saeid
  • Khosravi, Fatemeh
  • Shakiba, Mohamadreza
  • Kakoei, Arash
Abstract

<jats:p>Kinetic modeling and degradation study of liquid polysulfide (LPS)/clay nanocomposite is possible through Ozawa–Flynn–Wall (OFW) and Kissinger methods. Comparing the results of these models with experimental data leads to provide an accurate degradation kinetic evaluation of these materials. To this aim, the morphology and distribution of clay nanoparticles (CNPs) within the LPS matrix were investigated using Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD). To evaluate the interaction between the LPS and the CNPs, the Fourier transform infrared (FTIR) identification was utilized. Furthermore, to investigate the kinetics of degradation, the thermal gravimetric analysis (TGA) and derivative thermogravimetry (DTG) of the samples were used in the nitrogen atmosphere with the help of Kissinger and Ozawa–Flynn–Wall (OFW) models. The characterization results confirmed the homogenous dispersion of the CNPs into the LPS matrix. In addition, the presence of CNPs increased the thermal stability and activation energy (Ea) of the samples at different conversion rates. Moreover, the OFW method was highly consistent with the experimental data and provided an appropriate fit for the degradation kinetics.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • scanning electron microscopy
  • x-ray diffraction
  • Nitrogen
  • thermogravimetry
  • activation
  • resin
  • elemental analysis
  • gravimetric analysis