Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Corona-Motolinia, Nidia Diana

  • Google
  • 1
  • 7
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Synthesis, Crystal Structure, and Computational Methods of Vanadium and Copper Compounds as Potential Drugs for Cancer Treatment13citations

Places of action

Chart of shared publication
Martínez-Valencia, Beatriz
1 / 1 shared
Sánchez-Gaytán, Brenda L.
1 / 3 shared
Castro, María Eugenia
1 / 3 shared
González Vergara, Enrique
1 / 3 shared
Mendez-Rojas, Miguel
1 / 3 shared
Noriega, Lisset
1 / 1 shared
Melendez, Francisco J.
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Martínez-Valencia, Beatriz
  • Sánchez-Gaytán, Brenda L.
  • Castro, María Eugenia
  • González Vergara, Enrique
  • Mendez-Rojas, Miguel
  • Noriega, Lisset
  • Melendez, Francisco J.
OrganizationsLocationPeople

article

Synthesis, Crystal Structure, and Computational Methods of Vanadium and Copper Compounds as Potential Drugs for Cancer Treatment

  • Martínez-Valencia, Beatriz
  • Sánchez-Gaytán, Brenda L.
  • Castro, María Eugenia
  • González Vergara, Enrique
  • Mendez-Rojas, Miguel
  • Noriega, Lisset
  • Corona-Motolinia, Nidia Diana
  • Melendez, Francisco J.
Abstract

<jats:p>Transition metal-based compounds have shown promising uses as therapeutic agents. Among their unique characteristics, these compounds are suitable for interaction with specific biological targets, making them important potential drugs to treat various diseases. Copper compounds, of which Casiopeinas® are an excellent example, have shown promising results as alternatives to current cancer therapies, in part because of their intercalative properties with DNA. Vanadium compounds have been extensively studied for their pharmacological properties and application, mostly in diabetes, although recently, there is a growing interest in testing their activity as anti-cancer agents. In the present work, two compounds, [Cu(Metf)(bipy)Cl]Cl·2H2O and [Cu(Impy)(Gly)(H2O)]VO3, were obtained and characterized by visible and FTIR spectroscopies, single-crystal X-ray diffraction, and theoretical methods. The structural and electronic properties of the compounds were calculated through the density functional theory (DFT) using the Austin–Frisch–Petersson functional with dispersion APFD, and the 6-311 + G(2d,p) basis set. Non-covalent interactions were analyzed using Hirshfeld surface analysis (HSA) and atom in molecules analysis (AIM). Additionally, docking analysis to test DNA/RNA interactions with the Casiopeina-like complexes were carried out. The compounds provide metals that can interact with critical biological targets. In addition, they show interesting non-covalent interactions that are responsible for their supramolecular arrangements.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • compound
  • x-ray diffraction
  • theory
  • copper
  • density functional theory
  • vanadium