Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vardhan, Harsh

  • Google
  • 2
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Tensile, Hardness, XRD and Surface Vonmises Stress of 316 L Stainless Steel Built by Wire Arc Additive Manufacturing (WAAM)2citations
  • 2019Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle8citations

Places of action

Chart of shared publication
Vinoth, V.
1 / 1 shared
Prabhakaran, J.
1 / 1 shared
Sathiyamurthy, S.
1 / 3 shared
Sundaravignesh, S.
1 / 1 shared
Sanjeevi Prakash, K.
1 / 1 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Vinoth, V.
  • Prabhakaran, J.
  • Sathiyamurthy, S.
  • Sundaravignesh, S.
  • Sanjeevi Prakash, K.
OrganizationsLocationPeople

article

Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle

  • Vardhan, Harsh
Abstract

<jats:p>Coordination-driven self-assembly is an effective synthetic tool for the construction of spatially and electronically tunable supramolecular coordination complexes (SCCs), which are useful in various applications. Herein, we report the synthesis of a two-dimensional discrete metalla-rectangle [(η6-p-cymene)4Ru4(C6H2O4)2(2)2](CF3SO3)4 (3) by the reaction of a dinuclear half-sandwich ruthenium (II) complex [Ru2(η6-p-cymene)2(C6H2O4)Cl2] (1) and bis-pyridyl amide linker (2) in the presence of AgO3SCF3. This cationic ruthenium metalla-rectangle (3) has been isolated as its triflate salt and characterized by analytical techniques including elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy (13C-NMR), 1H-1H correlation spectroscopy (COSY), 1H-1H nuclear Overhauser effect spectroscopy (NOESY), diffusion ordered spectroscopy (DOSY), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Significantly, the 2D cationic ruthenium metalla-rectangle showed better anticancer activity towards three different cell lines (A549, Caki-1 and Lovo) as compared with the parent ruthenium complex (1) and the commercially used drug, cisplatin.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • two-dimensional
  • Nuclear Magnetic Resonance spectroscopy
  • spectrometry
  • self-assembly
  • infrared spectroscopy
  • elemental analysis
  • Ruthenium
  • electrospray ionisation
  • electrospray ionisation mass spectrometry