Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Łapińska, Barbara

  • Google
  • 3
  • 9
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Effect of surface cleaning regimen on glass ceramic bond strength21citations
  • 2019Flow cytometry analysis of antibacterial effects of universal dentin bonding agents on Streptococcus mutans26citations
  • 2017Degradacja warstwy hybrydowej - przegląd piśmiennictwacitations

Places of action

Chart of shared publication
Nissan, Joseph
1 / 1 shared
Nowak, Joanna
1 / 6 shared
Łukomska-Szymańska, Monika
3 / 9 shared
Sokołowski, Jerzy
2 / 22 shared
Rogowski, Jacek
1 / 3 shared
Grzegorczyk, Janina
1 / 1 shared
Konieczka, Magdalena
1 / 1 shared
Zarzycka, Beata
1 / 1 shared
Sokołowski, Krzysztof
1 / 4 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Nissan, Joseph
  • Nowak, Joanna
  • Łukomska-Szymańska, Monika
  • Sokołowski, Jerzy
  • Rogowski, Jacek
  • Grzegorczyk, Janina
  • Konieczka, Magdalena
  • Zarzycka, Beata
  • Sokołowski, Krzysztof
OrganizationsLocationPeople

article

Flow cytometry analysis of antibacterial effects of universal dentin bonding agents on Streptococcus mutans

  • Grzegorczyk, Janina
  • Konieczka, Magdalena
  • Zarzycka, Beata
  • Łukomska-Szymańska, Monika
  • Łapińska, Barbara
  • Sokołowski, Krzysztof
Abstract

There is no consensus on the antibacterial activity of dentin bonding systems (DBS). Many study models have been used to evaluate the antimicrobial activity of dental materials. In this study, a novel detection method, flow cytometry, was introduced. It allows for evaluation of the antibacterial activity of DBS, based on assessment of the disruption of the bacterial physical membrane induced by DBS. The aim of the study was to evaluate the antibacterial properties of selected dentin bonding systems against Streptococcus mutans. The highest antibacterial activity against S. mutans was observed for Adhese Universal (99.68% dead cells) and was comparable to that of Prime&Bond Universal, OptiBond Universal, or Clearfil Universal Bond Quick (p > 0.05). The lowest activity of all tested systems was displayed by the multi-mode adhesive, Universal Bond (12.68% dead bacteria cells), followed by the self-etch adhesive, OptiBond FL (15.58% dead bacteria cells). The present study showed that in the case of two-component DBS, the primer exhibited higher antimicrobial activity than the adhesive (or bond) itself.

Topics
  • impedance spectroscopy