People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raja, Robert
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Using small angle neutron scattering to explore porosity, connectivity and accessibility, towards optimised hierarchical solid acid catalystscitations
- 2022New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applicationscitations
- 2021Rational design and application of covalent organic frameworks for solar fuel productioncitations
- 2020Combining photocatalysis and optical fibre technology towards improved microreactor design for hydrogen generation with metallic nanoparticlescitations
- 2020Incorporating metal organic frameworks within microstructured optical fibers toward scalable photoreactorscitations
- 2017Heterogeneous zeotype catalysts for the direct utilisation of CO2
- 2017The molecular design of active sites in nanoporous materials for sustainable catalysiscitations
- 2013Investigating site-specific interactions and probing their role in modifying the acid-strength in framework architecturescitations
- 2009Designed nanoporous solids for the green production of vitamins, fine chemicals and renewable nylonscitations
Places of action
Organizations | Location | People |
---|
article
The molecular design of active sites in nanoporous materials for sustainable catalysis
Abstract
At the forefront of global development, the chemical industry is being confronted by a growing demand for products and services, but also the need to provide these in a manner that is sustainable in the long-term. In facing this challenge, the industry is being revolutionised by advances in catalysis that allow chemical transformations to be performed in a more efficient and economical manner. To this end, molecular design, facilitated by detailed theoretical and empirical studies, has played a pivotal role in creating highly-active and selective heterogeneous catalysts. In this review, the industrially-relevant Beckmann rearrangement is presented as an exemplar of how judicious characterisation and ab initio experiments can be used to understand and optimise nanoporous materials for sustainable catalysis.