Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Seyring, Martin

  • Google
  • 14
  • 51
  • 79

Schmalkalden University of Applied Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2024Crystalline Microstructure, Microsegregations, and Mechanical Properties of Inconel 718 Alloy Samples Processed in Electromagnetic Levitation Facility2citations
  • 2024Crystalline microstructure, microsegregations and mechanical properties of Inconel 718 alloy samples processed in electromagnetic levitation facility2citations
  • 2023Vibratory polishing of multiphase CuZn30//CuZn80 diffusion pairs for electron backscatter diffraction (EBSD) characterizationcitations
  • 2023Effect of Co vs. Fe content on early stages of oxidation of Co-Cr-Fe-Mn-Ni-Si complex concentrated alloys at 800 °C4citations
  • 2023Modelling of the Solidifying Microstructure of Inconel 7183citations
  • 2023Early oxidation stages of austenitic stainless steel monitored using Mn as tracer5citations
  • 2023Modelling of the Solidifying Microstructure of Inconel 718: Quasi-Binary Approximation3citations
  • 2023Modelling of the Solidifying Microstructure of Inconel 718:Quasi-Binary Approximation3citations
  • 2019Self-Assembled Graphene/MWCNT Bilayers as Platinum- Free Counter Electrode in Dye-Sensitized Solar Cellscitations
  • 2019Self‐Assembled Graphene/MWCNT Bilayers as Platinum‐Free Counter Electrode in Dye‐Sensitized Solar Cells30citations
  • 2017Influence of carbon source and synthesis temperature on structural and morphological properties of carbon nanofibers synthesized on tubular porous ZrO2 layers2citations
  • 2017Phase formation in alloy-type anode materials in the quaternary system Li–Sn–Si–C3citations
  • 2016Materialographic Preparation of Lithium-Carbon Intercalation Compounds2citations
  • 2009Characterization of grain structure in nanocrystalline gadolinium by high-resolution transmission electron microscopy20citations

Places of action

Chart of shared publication
Lippmann, Stephanie
6 / 11 shared
Kolbe, Matthias
2 / 8 shared
Fang, Yindong
5 / 5 shared
Freiberg, Katharina
6 / 9 shared
Kropotin, Nikolai
5 / 5 shared
Galenko, Peter
1 / 5 shared
Yu, Chu
5 / 5 shared
Galenko, Peter K.
4 / 7 shared
Lippmann, S.
1 / 3 shared
Möbius, J.
1 / 1 shared
Undisz, Andreas
2 / 11 shared
Wonneberger, Robert
2 / 4 shared
Stöcker, Hartmut
1 / 10 shared
Meye, Pauline
1 / 1 shared
Apell, Jonathan
1 / 3 shared
Laukkanen, Anssi
3 / 144 shared
Pinomaa, Tatu
3 / 38 shared
Provatas, Nikolas
3 / 18 shared
Otto, Felix
1 / 13 shared
Hafermann, Martin
1 / 5 shared
Schaal, Maximilian
1 / 4 shared
Kirste, Gloria
1 / 7 shared
Ronning, Carsten
1 / 14 shared
Fritz, Torsten
1 / 15 shared
Dellith, Jan
2 / 15 shared
Presselt, Martin
2 / 5 shared
Herrmann-Westendorf, Felix
1 / 2 shared
Plentz, Jonathan
2 / 11 shared
Rettenmayr, Markus
5 / 14 shared
Dellith, Andrea
2 / 7 shared
Dietzek, Benjamin
1 / 4 shared
Wahyuono, Ruri Agung
2 / 4 shared
Andrä, Gudrun
2 / 6 shared
Jia, Guobin
2 / 6 shared
Herrmannwestendorf, Felix
1 / 1 shared
Dietzek-Ivansic, Benjamin
1 / 2 shared
Richter, Hannes
1 / 7 shared
Ritter, Uwe
1 / 4 shared
Reger-Wagner, Norman
1 / 1 shared
Simon, Adrian
1 / 3 shared
Voigt, Ingolf
1 / 5 shared
Song, Xiaoyan
2 / 3 shared
Schmid-Fetzer, Rainer
1 / 7 shared
Liang, Song-Mao
1 / 1 shared
Drüe, Martin
1 / 1 shared
Kozlov, Artem
1 / 3 shared
Rettenmayr, M.
1 / 7 shared
Grasemann, A.
1 / 1 shared
Drüe, M.
1 / 1 shared
Kaiser, Ute
1 / 50 shared
Chuvilin, Andrey
1 / 19 shared
Chart of publication period
2024
2023
2019
2017
2016
2009

Co-Authors (by relevance)

  • Lippmann, Stephanie
  • Kolbe, Matthias
  • Fang, Yindong
  • Freiberg, Katharina
  • Kropotin, Nikolai
  • Galenko, Peter
  • Yu, Chu
  • Galenko, Peter K.
  • Lippmann, S.
  • Möbius, J.
  • Undisz, Andreas
  • Wonneberger, Robert
  • Stöcker, Hartmut
  • Meye, Pauline
  • Apell, Jonathan
  • Laukkanen, Anssi
  • Pinomaa, Tatu
  • Provatas, Nikolas
  • Otto, Felix
  • Hafermann, Martin
  • Schaal, Maximilian
  • Kirste, Gloria
  • Ronning, Carsten
  • Fritz, Torsten
  • Dellith, Jan
  • Presselt, Martin
  • Herrmann-Westendorf, Felix
  • Plentz, Jonathan
  • Rettenmayr, Markus
  • Dellith, Andrea
  • Dietzek, Benjamin
  • Wahyuono, Ruri Agung
  • Andrä, Gudrun
  • Jia, Guobin
  • Herrmannwestendorf, Felix
  • Dietzek-Ivansic, Benjamin
  • Richter, Hannes
  • Ritter, Uwe
  • Reger-Wagner, Norman
  • Simon, Adrian
  • Voigt, Ingolf
  • Song, Xiaoyan
  • Schmid-Fetzer, Rainer
  • Liang, Song-Mao
  • Drüe, Martin
  • Kozlov, Artem
  • Rettenmayr, M.
  • Grasemann, A.
  • Drüe, M.
  • Kaiser, Ute
  • Chuvilin, Andrey
OrganizationsLocationPeople

article

Modelling of the Solidifying Microstructure of Inconel 718

  • Laukkanen, Anssi
  • Lippmann, Stephanie
  • Galenko, Peter K.
  • Pinomaa, Tatu
  • Seyring, Martin
  • Provatas, Nikolas
  • Fang, Yindong
  • Freiberg, Katharina
  • Kropotin, Nikolai
  • Yu, Chu
Abstract

<p>The prediction of the equilibrium and metastable morphologies during the solidification of Ni-based superalloys on the mesoscopic scale can be performed using phase-field modeling. In the present paper, we apply the phase-field model to simulate the evolution of solidification microstructures depending on undercooling in a quasi-binary approximation. The results of modeling are compared with experimental data obtained on samples of the alloy Inconel 718 (IN718) processed using the electromagnetic leviatation (EML) technique. The final microstructure, concentration profiles of niobium, and the interface-velocity–undercooling relationship predicted by the phase field modeling are in good agreement with the experimental findings. The simulated microstructures and concentration fields can be used as inputs for the simulation of the precipitation of secondary phases.</p>

Topics
  • microstructure
  • phase
  • simulation
  • precipitation
  • superalloy
  • niobium