Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chauviré, Boris

  • Google
  • 3
  • 10
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Cracking of Gem Opals6citations
  • 2023Cracking of Gem Opals6citations
  • 2020Arthropod entombment in weathering-formed opal: new horizons for recording life in rocks10citations

Places of action

Chart of shared publication
Guichard, Florine
2 / 2 shared
Mollé, Valentin
2 / 2 shared
Fritsch, Emmanuel
2 / 3 shared
Thomas, Paul, Stephen
1 / 1 shared
Rondeau, Benjamin
3 / 3 shared
Lhuissier, Pierre
1 / 31 shared
Donini, Aline
1 / 1 shared
Berger, Brian
1 / 1 shared
Houadria, Mickal
1 / 1 shared
Kritsky, Gene
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Guichard, Florine
  • Mollé, Valentin
  • Fritsch, Emmanuel
  • Thomas, Paul, Stephen
  • Rondeau, Benjamin
  • Lhuissier, Pierre
  • Donini, Aline
  • Berger, Brian
  • Houadria, Mickal
  • Kritsky, Gene
OrganizationsLocationPeople

article

Cracking of Gem Opals

  • Guichard, Florine
  • Chauviré, Boris
  • Mollé, Valentin
  • Fritsch, Emmanuel
  • Rondeau, Benjamin
Abstract

<jats:p>The value of gem opals is compromised by their potential susceptibility to “crazing”, a phenomenon observed either in the form of whitening or cracking. To understand the latter, 26 opal samples were investigated and separated into 2 groups based on handling: “water-stored” opal samples, which are stored in water after extraction, and “air-stored” opal samples, which are stored in air for more than a year. To induce cracking, samples were thermally treated by staged heating and characterized using optical microscopy and Raman spectroscopy before and after cracking. For water-stored opals, cracking was initiated with moderate heating up to 150 °C, while for air-stored opals, higher temperatures, circa 300 °C, were required. In water-stored opals that cracked, polarized light microscopy revealed stress fields remaining around the cracks, and a red shift in the Raman bands suggested tensile stresses. These stresses were not observed in air-stored samples that cracked. Based on these observations, for air-stored samples, cracking was ascribed to super-heated water-induced decrepitation. By contrast, for water-stored samples, cracking was linked to drying shrinkage, which correlates with the anecdotal reports from the gem trade. We thus identify the physical origin of cracking, and by comparing it to current knowledge, we determine the factors leading to cracking.</jats:p>

Topics
  • impedance spectroscopy
  • extraction
  • crack
  • susceptibility
  • Raman spectroscopy
  • drying
  • crazing
  • Polarized light microscopy