Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kubota, Mitsuru

  • Google
  • 2
  • 8
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Evolution of the Reaction and Alteration of Granite with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive Transport Modelling4citations
  • 2021Evolution of the Reaction and Alteration of Mudstone with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive-Transport Modelling3citations

Places of action

Chart of shared publication
Ohuchi, Yuji
2 / 2 shared
Bateman, Keith
2 / 4 shared
Hanamachi, Yuji
2 / 2 shared
Wilson, James
2 / 4 shared
Amano, Yuki
2 / 2 shared
Seta, Takamasa
2 / 2 shared
Tachi, Yukio
2 / 2 shared
Murayama, Shota
2 / 2 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Ohuchi, Yuji
  • Bateman, Keith
  • Hanamachi, Yuji
  • Wilson, James
  • Amano, Yuki
  • Seta, Takamasa
  • Tachi, Yukio
  • Murayama, Shota
OrganizationsLocationPeople

article

Evolution of the Reaction and Alteration of Granite with Ordinary Portland Cement Leachates: Sequential Flow Experiments and Reactive Transport Modelling

  • Ohuchi, Yuji
  • Kubota, Mitsuru
  • Bateman, Keith
  • Hanamachi, Yuji
  • Wilson, James
  • Amano, Yuki
  • Seta, Takamasa
  • Tachi, Yukio
  • Murayama, Shota
Abstract

<jats:p>The construction of a repository for the geological disposal of radioactive waste will include the use of cement-based materials. Following closure, groundwater will saturate the repository, and the extensive use of cement will result in the development of a highly alkaline porewater, pH &gt; 12.5; this fluid will migrate into and react with the host rock. The chemistry of the fluid will evolve over time, initially with high Na and K concentrations, evolving to a Ca-rich fluid, and finally returning to the natural background groundwater composition. This evolving chemistry will affect the long-term performance of the repository, altering the physical and chemical properties, including radionuclide behaviour. Understanding these changes forms the basis for predicting the long-term evolution of the repository. This study focused on the determination of the nature and extent of the chemical reaction, as well as the formation and persistence of secondary mineral phases within a granite, comparing data from sequential flow experiments with the results of reactive transport modelling. The reaction of the granite with the cement leachates resulted in small changes in pH and the precipitation of calcium aluminium silicate hydrate (C-(A-)S-H) phases of varying compositions, of greatest abundance with the Ca-rich fluid. As the system evolved, secondary C-(A-)S-H phases redissolved, partly replaced by zeolites. This general sequence was successfully simulated using reactive transport modelling.</jats:p>

Topics
  • mineral
  • phase
  • experiment
  • aluminium
  • reactive
  • cement
  • precipitation
  • Calcium