Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bouabdellah, Mohammed

  • Google
  • 1
  • 10
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar supergene non-sulfide biomineralization and its relevance to microbiological activity, late Miocene uplift and climate changes15citations

Places of action

Chart of shared publication
Yans, Johan
1 / 5 shared
Levresse, Gilles
1 / 1 shared
Poot, Julien
1 / 2 shared
Dekoninck, Augustin
1 / 2 shared
Idbaroud, Mohammed
1 / 1 shared
Melchiorre, Erik
1 / 1 shared
Bouzahzah, Hassan
1 / 1 shared
Zaid, Khadra
1 / 1 shared
Boukirou, Wissale
1 / 1 shared
Potra, Adriana
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Yans, Johan
  • Levresse, Gilles
  • Poot, Julien
  • Dekoninck, Augustin
  • Idbaroud, Mohammed
  • Melchiorre, Erik
  • Bouzahzah, Hassan
  • Zaid, Khadra
  • Boukirou, Wissale
  • Potra, Adriana
OrganizationsLocationPeople

article

Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar supergene non-sulfide biomineralization and its relevance to microbiological activity, late Miocene uplift and climate changes

  • Yans, Johan
  • Levresse, Gilles
  • Poot, Julien
  • Dekoninck, Augustin
  • Idbaroud, Mohammed
  • Melchiorre, Erik
  • Bouzahzah, Hassan
  • Zaid, Khadra
  • Bouabdellah, Mohammed
  • Boukirou, Wissale
  • Potra, Adriana
Abstract

<p>Through integration of Pb-Zn ± Cu non-sulfide mineralogy, texture, and stable isotope (C, O, S) geochemistry, the world-class Touissit-Bou Beker and Jbel Bou Dahar Mississippi Valley-type districts of the Moroccan Atlasic system have been investigated in order to gain insights into the origin and processes that contributed to the formation of the base metal non-sulfide mineralization. In both districts, direct replacement (“red calamine”) and wallrock replacement (“white calamine”) ores are observed. Based on the mineral assemblages, ore textures, and crosscutting relations, three distinct mineralizing stages are recognized. The earliest, pre-non-sulfide gossanous stage was a prerequisite for the following supergene stages and constituted the driving force that ultimately promoted the leaching of most base metals such as Zn and Cu and alkalis from their rock sources. The following two stages, referred to as the main supergene “red calamine” and late “white calamine” ore stages, generated the bulk of mineable “calamine” ores in the Touissit-Bou Beker and Jbel Bou Dahar districts. Stable isotope compositions (δ<sup>13</sup>CV-PDB, δ<sup>18</sup>OV-SMOW, δ<sup>34</sup>SCDT) support a three-stage model whereby metals were released by supergene acidic fluids and then precipitated by bacteria and archaea-mediated metal-rich meteoric fluids due to a decrease in temperature and/or increase of fO2. Oxygen isotope thermometry indicates decreasing precipitation temperatures with advancing paragenetic sequence from 33° to 18 °C, with wet to semi-arid to arid climatic conditions. The close spatial relationships between coexisting sulfide and non-sulfide mineralization along with stable isotope constraints suggest that the oxidation of sulfides occurred concurrently after the main stage of the Alpine orogeny between 15 Ma and the present. More importantly, the current data show for the first time the involvement of biologically controlled activity as the major driving process that triggered both oxidation and deposition of supergene mineralization at Jbel Bou Dahar and Touissit-Bou Beker districts. Conclusions drawn from this study therefore have implications for supergene Mississippi Valley-type (MVT)-derived non-sulfide deposits worldwide and account for the prominent role of biological processes in the genesis of this category of ore deposits.</p>

Topics
  • Deposition
  • mineral
  • Oxygen
  • texture
  • precipitation
  • leaching