Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Verma, Ashish

  • Google
  • 2
  • 11
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Machining Performance of Ti6Al4V Nano Composites Processed at Al2O3 Nano Particles Mixed Minimum Quantity Lubrication Conditioncitations
  • 2022Exploring Diversity and Polymer Degrading Potential of Epiphytic Bacteria Isolated from Marine Macroalgae8citations

Places of action

Chart of shared publication
Kannan, M.
1 / 3 shared
Kumar, T. Ch. Anil
1 / 5 shared
Pragadish, N.
1 / 3 shared
Karthi, V.
1 / 2 shared
Nayak, Bijaya Bijeta
1 / 3 shared
Anushkannan, N. K.
1 / 2 shared
Sahu, Santosh Kumar
1 / 6 shared
Sundharam, Shiva S.
1 / 1 shared
Ojha, Anup Kumar
1 / 1 shared
Krishnamurthi, Srinivasan
1 / 1 shared
Kumar, Pravin
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Kannan, M.
  • Kumar, T. Ch. Anil
  • Pragadish, N.
  • Karthi, V.
  • Nayak, Bijaya Bijeta
  • Anushkannan, N. K.
  • Sahu, Santosh Kumar
  • Sundharam, Shiva S.
  • Ojha, Anup Kumar
  • Krishnamurthi, Srinivasan
  • Kumar, Pravin
OrganizationsLocationPeople

article

Exploring Diversity and Polymer Degrading Potential of Epiphytic Bacteria Isolated from Marine Macroalgae

  • Verma, Ashish
  • Sundharam, Shiva S.
  • Ojha, Anup Kumar
  • Krishnamurthi, Srinivasan
  • Kumar, Pravin
Abstract

<jats:p>The macroalgae surface allows specific bacterial communities to colonize, resulting in complex biological interactions. In recent years, several researchers have studied the diversity and function of the epiphytic bacteria associated with algal host, but largely these interactions remain underexplored. In the present study we analysed the cultivable diversity and polymer degradation potential of epiphytic bacteria associated with five different marine macroalgae (Sargassum, Ulva, Padina, Dictyota and Pterocladia sp.) sampled from the central west coast of India. Out of the total 360 strains isolated, purified and preserved, about 238 strains were identified through 16S rRNA gene sequence analysis and processed for polymer (cellulose, pectin, xylan and starch) degrading activities. Phylogeny placed the strains within the classes Actinobacteria, Bacilli, Alpha-proteobacteria, and Gamma-proteobacteria and clustered them into 45 genera, wherein Vibrio, Bacillus, Pseudoalteromonas, Alteromonas, Staphylococcus and Kocuria spp. were the most abundant with 20 strains identified as potentially novel taxa within the genera Bacillus, Cellulosimicrobium, Gordonia, Marinomonas, Vibrio, Luteimonas and Pseudoalteromonas. In terms of polymer hydrolysis potential, 61.3% had xylanase activity, while 59.7%, 58.8%, and 52.2% had amylase, cellulase, and pectinase activity, respectively. Overall, 75.6% of the strains degraded more than one polysaccharide, 24% degraded all polymers, while nine strains (3.8%) degraded raw sugarcane bagasse. This study showed great potential for seaweed-associated bacteria in the bio-remediation of agro-waste based raw materials, which can be employed in the form of green technology.</jats:p>

Topics
  • surface
  • polymer
  • cellulose