People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gardeniers, Han
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substratescitations
- 2023Fabrication of homogeneous shell-isolated sers substrates for catalytic applications
- 20233D‐Architected Alkaline‐Earth Perovskitescitations
- 2022Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumescitations
- 2022Additive Manufacturing of 3D Luminescent ZrO2:Eu3+ Architecturescitations
- 2022Vacuum-driven assembly of electrostatically levitated microspheres on perforated surfacescitations
- 2020Massive Parallel NEMS Flow Restriction Fabricated Using Self-Aligned 3D-Crystallographic Nanolithographycitations
- 2020Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etchingcitations
- 2020Spatial Segregation of Microspheres by Rubbing-Induced Triboelectrification on Patterned Surfacescitations
- 2018Three-dimensional fractal geometry for gas permeation in microchannelscitations
- 2018Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etchingcitations
- 2012Production and characterization of micro- and nano-features in biomedical alumina and zirconia ceramics using a tape casting routecitations
- 2008On the resilience of PDMS microchannels after violent optical breakdown microbubble cavitation
- 2007Integrated electrochemical sensor array for on-line monitoring of yeast fermentationscitations
- 2007Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in si (110)citations
- 2006Fabrication of microfluidic networks with integrated electrodescitations
- 2006Monitoring of yeast cell concentration using a micromachnined impedance sensorcitations
- 2005Monitoring of yeast cell concentration using a micromachined impedance sensor
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2002Fabrication and characterization of MEMS based wafer-scale palladium-silver alloy membranes for hydrogen separation and hydrogenation/dehydrogenation reactionscitations
- 2002Integrated Micro- and Nanofluidics: Silicon Revisitedcitations
- 2002Micromachined Palladium - Silver Alloy Membranes for Hydrogen Separation
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
article
Three-dimensional fractal geometry for gas permeation in microchannels
Abstract
The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically. The results show high permeation flux due to low resistance to mass transfer because of the hierarchical branched structure of the fractals, and the high number of the apertures. This approach offers an advantage of high surface to volume ratio and pores in the range of nanometers. The obtained results show that the gas permeation through the nanonozzles in the form of fractal geometry is remarkably enhanced in comparison to the commonly-used polydimethylsiloxane (PDMS) dense membrane. The developed chip is envisioned as an interesting alternative for gas-liquid contactors that require harsh conditions, such as microreactors or microdevices, for energy applications. ; The authors would like to acknowledge the financial support from the Government of Aragon and the Education, Audiovisual and Culture Executive Agency (EU-EACEA) within the EUDIME—“Erasmus Mundus Doctorate in Membrane Engineering” program (FPA 2011-0014, SGA 2012-1719, http://eudime.unical.it). ; Peer reviewed