People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gečys, Paulius
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Femtosecond Laser Cutting of 110–550 µm Thickness Borosilicate Glass in Ambient Air and Watercitations
- 2022Quality and flexural strength of laser-cut glass: classical top-down ablation versus water-assisted and bottom-up machiningcitations
- 2022Efficient Water-Assisted Glass Cutting with 355 nm Picosecond Laser Pulsescitations
- 2022Transversal and axial modulation of axicon-generated Bessel beams using amplitude and phase masks for glass processing applicationscitations
- 2021Chemical etching of fused silica after modification with two-pulse bursts of femtosecond lasercitations
- 2020In-depth comparison of conventional glass cutting technologies with laser-based methods by volumetric scribing using Bessel beam and rear-side machiningcitations
Places of action
Organizations | Location | People |
---|
article
Efficient Water-Assisted Glass Cutting with 355 nm Picosecond Laser Pulses
Abstract
<jats:p>In this study, the cutting of borosilicate glass plates in ambient air and water with a 355 nm wavelength picosecond laser was carried out. Low (2.1–2.75 W) and high (15.5 W) average laser power cutting regimes were studied. Thorough attention was paid to the effect of the hatch distance on the cutting quality and characteristic strength of glass strips cut in both environments. At optimal cutting parameters, ablation efficiency and cutting rates were the highest but cut sidewalls were covered with periodically recurring ridges. Transition to smaller hatch values improved the cut sidewall quality by suppressing the ridge formation, but negatively affected the ablation efficiency and overall strength of glass strips. Glass strips cut in water in the low-laser-power regime had the highest characteristic strength of 117.6 and 107.3 MPa for the front and back sides, respectively. Cutting in a high-laser-power regime was only carried out in water. At 15.5 W, the ablation efficiency and effective cutting speed per incident laser power increased by 16% and 22%, respectively, compared with cutting in water in a low-laser-power regime.</jats:p>