Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiele, Patrick

  • Google
  • 1
  • 5
  • 6

University of Freiburg

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Reliability of Neural Implants—Effective Method for Cleaning and Surface Preparation of Ceramics6citations

Places of action

Chart of shared publication
Stieglitz, Thomas
1 / 11 shared
Bühler, Melanie
1 / 3 shared
Suaning, Gregg
1 / 1 shared
Hergesell, Jan
1 / 1 shared
Boretius, Tim
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Stieglitz, Thomas
  • Bühler, Melanie
  • Suaning, Gregg
  • Hergesell, Jan
  • Boretius, Tim
OrganizationsLocationPeople

article

Reliability of Neural Implants—Effective Method for Cleaning and Surface Preparation of Ceramics

  • Kiele, Patrick
  • Stieglitz, Thomas
  • Bühler, Melanie
  • Suaning, Gregg
  • Hergesell, Jan
  • Boretius, Tim
Abstract

<jats:p>Neural implants provide effective treatment and diagnosis options for diseases where pharmaceutical therapies are missing or ineffective. These active implantable medical devices (AIMDs) are designed to remain implanted and functional over decades. A key factor for achieving reliability and longevity are cleaning procedures used during manufacturing to prevent failures associated with contaminations. The Implantable Devices Group (IDG) at University College London (UCL) pioneered an approach which involved a cocktail of reagents described as “Leslie’s soup”. This process proved to be successful but no extensive evaluation of this method and the cocktail’s ingredients have been reported so far. Our study addressed this gap by a comprehensive analysis of the efficacy of this cleaning method. Surface analysis techniques complemented adhesion strengths methods to identify residues of contaminants like welding flux, solder residues or grease during typical assembly processes. Quantitative data prove the suitability of “Leslie’s soup” for cleaning of ceramic components during active implant assembly when residual ionic contaminations were removed by further treatment with isopropanol and deionised water. Solder and flux contaminations were removed without further mechanical cleaning. The adhesive strength of screen-printed metalisation layers increased from 12.50 ± 3.83 MPa without initial cleaning to 21.71 ± 1.85 MPa. We conclude that cleaning procedures during manufacturing of AIMDs, especially the understanding of applicability and limitations, is of central importance for their reliable and longevity.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • ceramic