People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmad, Shafiq
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Morphological, Mineralogical, and Biochemical Characteristics of Particulate Matter in Three Size Fractions (PM10, PM2.5, and PM1) in the Urban Environmentcitations
- 2021Fe2O3 nanoparticles deposited over self-floating facial sponge for facile interfacial seawater solar desalination ; Hybrid and Composite Crystalline Materialscitations
- 2020Optimization of WEDM for precise machining of novel developed Al6061-7.5% SiC squeeze casted compositecitations
- 2020A comprehensive analysis of the effect of graphene-based dielectric for sustainable electric discharge machining of Ti-6Al-4Vcitations
- 2020Milling Microchannels in Monel 400 Alloy by Wire EDM: An Experimental Analysiscitations
Places of action
Organizations | Location | People |
---|
article
Milling Microchannels in Monel 400 Alloy by Wire EDM: An Experimental Analysis
Abstract
<jats:p>This paper presents the results of an investigation on the capacity of wire electrical discharge machining (WEDM) to produce microchannels in the Nickel-based alloy, Monel 400. The main objective of the current study is to produce microchannels with desired/target geometry and acceptable surface quality. Square cross-sectional microchannels with dimensions of 500 × 500 µm were investigated. Experiments were conducted based on the one-factor-at-a-time approach for the key input WEDM process parameters, namely pulse-on time (TON), pulse-off time (TOFF), average gap voltage (VGAP), wire feed (WF), and dielectric flow rate (FR). Dimensional accuracy, machining speed, surface roughness, surface morphology, microhardness, and microstructure were analyzed to evaluate the microchannels. The minimum errors of 6% and 3% were observed in the width and depth of the microchannels, respectively. Furthermore, microchannels with enhanced surface integrity could be produced exhibiting smooth surface morphology and shallow recast layer (~0–2.55 µm).</jats:p>