Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Regi, Francesco

  • Google
  • 7
  • 11
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Experimental Characterization and Simulation of Thermoplastic Polymer Flow Hesitation in Thin-Wall Injection Molding Using Direct In-Mold Visualization Technique11citations
  • 2019Direct flow visualization of hesitation during injection molding of thermoplastic polymers2citations
  • 2018On the effect of machining strategy in micro milling of tool steel surface micro features with optical functionalitycitations
  • 2018A method for the characterization of the reflectance of anisotropic functional surfaces5citations
  • 2017A comparison of reflectance properties on polymer micro-structured functional surfacecitations
  • 2017The impact of tool wear on the functionality of replicated polymer surface with micro structurescitations
  • 2017Investigation of Tooling for Anisotropic Optical Functional Surfacescitations

Places of action

Chart of shared publication
Tosello, Guido
7 / 101 shared
Zhang, Yang
6 / 38 shared
Guerrier, Patrick
1 / 6 shared
Li, D.
1 / 22 shared
Davoudinejad, Ali
1 / 7 shared
Frisvad, Jeppe Revall
2 / 7 shared
Li, Dongya
4 / 4 shared
Aanæs, Henrik
2 / 5 shared
Nielsen, J. B.
1 / 1 shared
Madsen, M. H.
2 / 3 shared
Nielsen, Jannik Boll
3 / 4 shared
Chart of publication period
2020
2019
2018
2017

Co-Authors (by relevance)

  • Tosello, Guido
  • Zhang, Yang
  • Guerrier, Patrick
  • Li, D.
  • Davoudinejad, Ali
  • Frisvad, Jeppe Revall
  • Li, Dongya
  • Aanæs, Henrik
  • Nielsen, J. B.
  • Madsen, M. H.
  • Nielsen, Jannik Boll
OrganizationsLocationPeople

article

Experimental Characterization and Simulation of Thermoplastic Polymer Flow Hesitation in Thin-Wall Injection Molding Using Direct In-Mold Visualization Technique

  • Tosello, Guido
  • Zhang, Yang
  • Guerrier, Patrick
  • Regi, Francesco
Abstract

A special mold provided with a glass window was used in order to directly evaluate the flow progression during the filling phase of the injection molding process in a thin-wall cavity and to validate the simulation of the process with particular focus on the hesitation effect. The flow of the polymer was recorded at 500 frames per second using a high-speed camera (HSC). Two unfilled thermoplastic polymers, acrylonitrile butadiene styrene (ABS), and polypropylene (PP), were used to fill two different 50 mm × 18 mm staircase geometry cavities, which were specifically designed to evaluate the hesitation effect with thicknesses of 1500, 1250, 1000, 750, 500 µm (cavity insert no. 1) and 1500, 1200, 900, 600, 300 µm (cavity insert no. 2). In addition to the video recordings, the simulations were validated using the timings and the data obtained by three pressure sensors and two thermocouples located in the cavity. For each injection cycle recorded on camera the machine data were collected to carefully implement the correct boundary conditions in the simulations. The analysis of the video recordings highlighted that flow progression and hesitation were mainly influenced not only by the thickness, but also by the velocity and the material type. The simulation results were in relatively good agreement with the experiments in terms of flow pattern and progression. Filling times were predicted with an average relative error deviation of 2.5% throughout all the section thicknesses of the cavity. Lower accuracies in terms of both filling times and injection pressure were observed at increasingly thinner sections.

Topics
  • phase
  • experiment
  • simulation
  • glass
  • glass
  • injection molding
  • thermoplastic