Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Heugue, Pierre

  • Google
  • 2
  • 6
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Improving the reliability of small- and wide-angle X-ray scattering measurements of anisotropic precipitates in metallic alloys using sample rotation1citations
  • 2019Precipitation Kinetics and Evaluation of the Interfacial Mobility of Precipitates in an AlSi7Cu3.5Mg0.15 Cast Alloy with Zr and V Additions15citations

Places of action

Chart of shared publication
De Geuser, Frédéric
1 / 39 shared
Perrin, Thomas
1 / 2 shared
Arnaud, Stéphan
1 / 1 shared
Després, Arthur
1 / 4 shared
Deschamps, Alexis
1 / 59 shared
Chahine, Gilbert, A.
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • De Geuser, Frédéric
  • Perrin, Thomas
  • Arnaud, Stéphan
  • Després, Arthur
  • Deschamps, Alexis
  • Chahine, Gilbert, A.
OrganizationsLocationPeople

article

Precipitation Kinetics and Evaluation of the Interfacial Mobility of Precipitates in an AlSi7Cu3.5Mg0.15 Cast Alloy with Zr and V Additions

  • Heugue, Pierre
Abstract

<jats:p>Recent environmental restrictions constrained car manufacturers to promote cast aluminum alloys working at high temperatures (180 °C–300 °C). The development of new alloys permits the fabrication of higher-strength components in engine downsizing. Those technologies increase internal loadings and specific power and stretch current materials to their limits. Transition metals in aluminum alloys are good candidates to improve physical, mechanical, and thermodynamic properties with the aim of increasing service life of parts. This study is focused on the modified AlSi7Cu3.5Mg0.15 alloy where Mn, Zr, and V have been added as alloying elements for high-temperature applications. The characterization of the cast alloy in this study helps to evaluate and understand its performance according to their physical state: As-cast, as-quenched, or artificially aged. The precipitation kinetics of the AlSi7Cu3.5Mg0.15 (Mn, Zr, V) alloy has been characterized by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) observations, and micro-hardness testing. The Kissinger analysis was applied to extract activation energies from non-isothermal DSC runs conducted at different stationary heating rates. Finally, first-order evaluations of the interfacial mobility of precipitates were obtained.</jats:p>

Topics
  • impedance spectroscopy
  • mobility
  • aluminium
  • strength
  • hardness
  • transmission electron microscopy
  • precipitate
  • precipitation
  • differential scanning calorimetry
  • activation
  • interfacial
  • hardness testing