People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moor, Emmanuel De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Double Soaking of Medium Manganese Steels
- 2023Austenite Formation and Manganese Partitioning during Double Soaking of an Ultralow Carbon Medium‐Manganese Steelcitations
- 2021Diffusional and Partitionless Ferrite‐to‐Austenite Phase Transformations during Intercritical Annealing of Medium‐Mn Steelscitations
- 2021The In Situ Observation of Phase Transformations During Intercritical Annealing of a Medium Manganese Advanced High Strength Steel by High Energy X-Ray Diffractioncitations
- 2021Tempering and Austempering of Double Soaked Medium Manganese Steelscitations
- 2019Deformation Behavior of a Double Soaked Medium Manganese Steel with Varied Martensite Strengthcitations
- 2019Crystallography and Mechanical Properties of Intercritically Annealed Quenched and Partitioned High-Aluminium Steelcitations
- 2019Processing Variants in Medium-Mn Steelscitations
- 2019Accelerated Ferrite-to-Austenite Transformation During Intercritical Annealing of Medium-Manganese Steels Due to Cold-Rollingcitations
Places of action
Organizations | Location | People |
---|
article
Deformation Behavior of a Double Soaked Medium Manganese Steel with Varied Martensite Strength
Abstract
<jats:p>The effects of athermal martensite on yielding behavior and strain partitioning during deformation is explored using in situ neutron diffraction for a 0.14C–7.14Mn medium manganese steel. Utilizing a novel heat treatment, termed double soaking, samples with similar microstructural composition and varied athermal martensite strength and microstructural characteristics, which composed the bulk of the matrix phase, were characterized. It was found that the addition of either as-quenched or tempered athermal martensite led to an improvement in mechanical properties as compared to a ferrite plus austenite medium manganese steel, although the yielding and work hardening behavior were highly dependent upon the martensite characteristics. Specifically, athermal martensite was found to promote continuous yielding and improve the work hardening rate during deformation. The results of this study are particularly relevant when considering the effect of post-processing thermal heat treatments, such as tempering or elevated temperature service environments, on the mechanical properties of medium manganese steels containing athermal martensite.</jats:p>