People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Somani, Mahesh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Abnormal Trend of Ferrite Hardening in a Medium-Si Ferrite-Martensite Dual Phase Steelcitations
- 2021Optimization of the CCT curves for steels containing Al, Cu and Bcitations
- 2020Towards industrial applicability of (medium C) nanostructured bainitic steels (TIANOBAIN)
- 2020Characteristics of carbide-free medium-carbon bainitic steels in high-stress abrasive wear conditionscitations
- 2019Detection and Estimation of Retained Austenite in a High Strength Si-Bearing Bainite-Martensite-Retained Austenite Micro-Composite Steel after Quenching and Bainitic Holding (Q&B)citations
- 2019Quenching and Partitioning of Multiphase Aluminum-Added Steelscitations
- 2019Optimization of CCT equations using calculated grain boundary soluble compositions for the simulation of austenite decomposition of steelscitations
- 2018Comparison of impact-abrasive wear characteristics and performance of direct quenched (DQ) and direct quenched and partitioned (DQ&P) steelscitations
Places of action
Organizations | Location | People |
---|
article
Detection and Estimation of Retained Austenite in a High Strength Si-Bearing Bainite-Martensite-Retained Austenite Micro-Composite Steel after Quenching and Bainitic Holding (Q&B)
Abstract
<jats:p>To develop an advanced high strength steel with reasonable ductility based on low alloying concept as well as micro-composite microstructure essentially consisting of bainite, martensite and retained austenite, a Si-bearing, low alloy medium carbon sheet steel (DIN1.5025 grade) was subjected to typical quenching and bainitic holding (Q&B) type isothermal treatment in the bainitic region close to martensite start temperature (Ms) for different durations in the range 5s to 1h. While the low temperature bainite has the potential to provide the required high strength, a small fraction of finely divided austenite stabilized between the bainitic laths is expected to provide the desired elongation and improved work hardening. Various materials characterization techniques including conventional light metallography, field emission scanning electron microscopy FE-SEM, electron backscatter diffraction (EBSD), differential thermal analysis, X-ray diffraction (XRD) and vibrating sample magnetometry (VSM), were used to detect and estimate the volume fraction, size and morphology and distribution of retained austenite in the micro-composite samples. The results showed that the color light metallography technique using LePera’s etching reagent could clearly reveal the retained austenite in the microstructures of the samples isothermally held for shorter than 30s, beyond which an unambiguous distinction between the retained austenite and martensite was imprecise. On the contrary, the electron microscopy using a FE-SEM was not capable of identifying clearly the retained austenite from bainite and martensite. However, the EBSD images could successfully distinguish between bainite, martensite and retained austenite microphases with good contrast. Although the volume fractions of retained austenite measured by EBSD are in accord with those obtained by XRD and color light metallography, the XRD measurements showed somewhat higher fractions owing to its ability to acquisition and analyze the diffracted X-rays from very finely divided retained austenite, too. The differential thermal analysis and vibrating sample magnetometry techniques also confirmed the stabilization of retained austenite finely divided in bainite/martensite micro-composite microstructures. In addition, the peak temperatures and intensities corresponding to the decomposition of retained austenite were correlated with the related volume fractions and carbon contents measured by the XRD analysis.</jats:p>