Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barbosa, Joaquim

  • Google
  • 3
  • 5
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019The role of acoustic pressure during solidification of AlSi7Mg alloy in sand mold casting9citations
  • 2018Effect of internal structure in the compression behavior of casted Al/LECA composite foamscitations
  • 2005Evaluation of y2O3 as front layer of ceramic crucibles for vaccum induction melting of TiAl based alloyscitations

Places of action

Chart of shared publication
Carneiro, Vítor Hugo Pimenta
2 / 14 shared
Puga, Hélder
2 / 45 shared
Teodoro, Orlando
1 / 16 shared
Ribeiro, C. Silva
1 / 1 shared
Monteiro, Caetano
1 / 1 shared
Chart of publication period
2019
2018
2005

Co-Authors (by relevance)

  • Carneiro, Vítor Hugo Pimenta
  • Puga, Hélder
  • Teodoro, Orlando
  • Ribeiro, C. Silva
  • Monteiro, Caetano
OrganizationsLocationPeople

article

The role of acoustic pressure during solidification of AlSi7Mg alloy in sand mold casting

  • Barbosa, Joaquim
  • Carneiro, Vítor Hugo Pimenta
  • Puga, Hélder
Abstract

New alloy processes have been developed and casting techniques are continuously evolving. Such constant development implies a consequent development and optimization of melt processing and treatment. The present work proposes a method for studying the influence of acoustic pressure in the overall refinement of sand cast aluminum alloys, using and correlating experimental and numerical approaches. It is shown that the refinement/modification of the α-Al matrix is a consequence of the acoustic activation caused in the liquid metal directly below the face of the acoustic radiator. Near the feeder, there is a clear homogeneity in the morphology of the α-Al with respect to grain size and grain circularity. However, the damping of acoustic pressure as the melt is moved away from the feeder increases and the influence of ultrasound is reduced, even though the higher cooling rate seems to compensate for this effect. ; This work was supported by FCT funding through the project PTDC/EMEEME/30967/2017 (NORTE-0145-FEDER-030967) and by FEDER funding through COMPETE 2020, NORTE2020, PORTUGAL2020 – Programa Operacional Competitividade e Internacionalização (POCI). Additionally, this work was supported by FCT with the reference project UID/EEA/04436/2019. ; info:eu-repo/semantics/publishedVersion

Topics
  • impedance spectroscopy
  • morphology
  • grain
  • grain size
  • melt
  • aluminium
  • ultrasonic
  • casting
  • activation
  • solidification
  • sand casting