People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aigner, Roman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Areal fatigue strength assessment of cast aluminium surface layerscitations
- 2019On the mean stress sensitivity of cast aluminium considering imperfectionscitations
- 2019Numerical Fatigue Analysis of Induction-Hardened and Mechanically Post-Treated Steel Componentscitations
- 2019Characterising the fatigue strength of aluminium castings by applied statistical evaluation of imperfections
- 2019On the Statistical Size Effect of Cast Aluminiumcitations
- 2019Short and long crack growth of aluminium cast alloyscitations
- 2018Application of a area -Approach for Fatigue Assessment of Cast Aluminum Alloys at Elevated Temperaturecitations
- 2018Local fatigue strength assessment of induction hardened components based on numerical manufacturing process simulationcitations
- 2018Lifetime assessment of cast aluminium components based on CT-evaluated microstructural defects
- 2018Fatigue strength characterization of Al-Si cast material incorporating statistical size effectcitations
- 2018Modification of a Defect-Based Fatigue Assessment Model for Al-Si-Cu Cast Alloyscitations
- 2016Aufbau einer numerischen Simulationskette für induktionsgehärtete Randschichten
Places of action
Organizations | Location | People |
---|
article
Application of a area -Approach for Fatigue Assessment of Cast Aluminum Alloys at Elevated Temperature
Abstract
This paper contributes to the effect of elevated temperature on the fatigue strength of common aluminum cast alloys EN AC-46200 and EN AC-45500. The examination covers both static as well as cyclic fatigue investigations to study the damage mechanism of the as-cast and post-heat-treated alloys. The investigated fracture surfaces suggest a change in crack origin at elevated temperature of 150 ∘ C. At room temperature, most fatigue tests reveal shrinkage-based micro pores as their crack initiation, whereas large slipping areas occur at elevated temperature. Finally, a modified area−−−−√ -based fatigue strength model for elevated temperatures is proposed. The original area−−−−√ model was developed by Murakami and uses the square root of the projected area of fatigue fracture-initiating defects to correlate with the fatigue strength at room temperature. The adopted concept reveals a proper fit for the fatigue assessment of cast Al-Si materials at elevated temperatures; in detail, the slope of the original model according to Murakami should be decreased at higher temperatures as the spatial extent of casting imperfections becomes less dominant at elevated temperatures. This goes along with the increased long crack threshold at higher operating temperature conditions.