People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Billy, Emmanuel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Propylene glycol-based deep eutectic solvent as an alternative to Ethaline for electrometallurgycitations
- 2024Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solventcitations
- 2024Circular recycling concept for silver recovery from photovoltaic cells in Ethaline deep eutectic solventcitations
- 2023Propeline: a green alternative to Ethaline for electrochemical recovery of precious metals
- 2023Propeline : a new candidate for precious metal recovery 3rd International Meeting on Deep Eutectic Systems, Lisbonne, 19-22 juin 2023
- 2022Coupling electrochemical leaching and electrodeposition in ionic solvents for critical and precious metals recovery
- 2022Platinum recovery through electrochemical process
- 2021Mass transport in Ionic Solvents during electrodeposition of gold and palladium
- 2021Electrochemical recovery of precious metals in Ionic Liquid mixtures or Deep Eutectic Solvents
- 2018Recovery of Metals from Secondary Raw Materials by Coupled Electroleaching and Electrodeposition in Aqueous or Ionic Liquid Mediacitations
- 2018Fundamental and Applied Aspects to Recycle NMC Cathode Material in Acidic Solution
- 2017Electrochemical recovery of platinum from spent proton exchange membrane fuel cells using ionic liquid melts
- 2010Impact of ultra-low Pt loadings on the performance of anode/cathode in a proton-exchange membrane fuel cellcitations
Places of action
Organizations | Location | People |
---|
article
Recovery of Metals from Secondary Raw Materials by Coupled Electroleaching and Electrodeposition in Aqueous or Ionic Liquid Media
Abstract
This paper presents recent views on a hybrid process for beneficiation of secondary raw materialsbycombinedelectroleachingoftargetedmetalsandelectrodeposition.Onthebasisof severalcasestudieswithaqueoussolutionsorinionicliquidmedia,thepaperdescribesthe potential and the limits of the novel, hybrid technique, together with the methodology employed, combining determination of speciation, physical chemistry, electrochemistry, and chemical engineering.Ononehand,thecaseofelectroleaching/electrodeposition(E/E)processinaqueous media,althoughofteninvestigatedatthebenchscale,appearsneverthelessrelativelymature, because of the developed methodology, and the appreciable current density allowed, and so it can be used to successfully treat electrode materials of spent Zn/MnO2 batteries or Ni/Cd accumulators and Waelz oxide. On the other hand, the use of ionic liquids as promising media for the recovery of various metals can be considered for other types of wastes, as shown here for the case of electrodes of aged fuel cells. The combined (E/E) technique could be successfully used for the above waste, in particularbythetrickyselectionofionicliquidmedia.Nevertheless,furtherinvestigationsin physicalchemistryandchemicalengineeringappearnecessaryforpossibledevelopmentsof larger-scale processes for the recovery of these strategic resources.