Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Săndulache, Florin

  • Google
  • 1
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloy18citations

Places of action

Chart of shared publication
Zegan, Georgeta
1 / 8 shared
Cimpoeşu, Ramona
1 / 1 shared
Istrate, Bogdan
1 / 5 shared
Cimpoeşu, Nicanor
1 / 4 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Zegan, Georgeta
  • Cimpoeşu, Ramona
  • Istrate, Bogdan
  • Cimpoeşu, Nicanor
OrganizationsLocationPeople

article

Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloy

  • Zegan, Georgeta
  • Săndulache, Florin
  • Cimpoeşu, Ramona
  • Istrate, Bogdan
  • Cimpoeşu, Nicanor
Abstract

<jats:p>Nowadays, alongside metallic biomaterials, there is increasing interest in using degradable metals in an appreciable number of medical applications. There are new kinds of metallic biomaterials for medical applications and many new findings have been reported over the past few years. Iron-based materials are a solution for biodegradable applications based on their mechanical and chemical properties. In order to control the corrosion rate of the Fe10Mn6Si alloy, we proposed the use of two additional elements, Ca and Mg, as corrosion promoters. The new material was obtained in an air-controlled atmosphere furnace after five melting operations. The material was in vitro analyzed from a corrosion resistance point of view. The experiments were realized by immersion (7, 14, and 30 days) in simulated body fluid (SBF) solution at 37 °C and a constant pH, and by electrochemical tests (electrochemical impedance spectroscopy (EIS), linear polarization (LP), cyclic polarization (CP)). Material surfaces before and after corrosion tests were analyzed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) techniques. A discussion on the degradation rate of the material was realized from a comparison of the results. The results presented good composition homogeneity after the re-melting stages, with low percentages of Ca and Mg in the material, but with an adequate spread in the alloy.</jats:p>

Topics
  • surface
  • corrosion
  • scanning electron microscopy
  • x-ray diffraction
  • experiment
  • iron
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • biomaterials