People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suresh, Kalidass
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD)citations
- 2019High Temperature Deformation Behavior and Processing Maps of AZ31 Alloy Deformed in Tension versus Compression
- 2018Effect of calcium on the hot working behavior of AZ31-1.5 vol.% nano-alumina composite prepared by disintegrated melt deposition (DMD) processingcitations
- 2018Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn alloycitations
- 2018Enhancement of Strength and Hot Workability of AZX312 Magnesium Alloy by Disintegrated Melt Deposition (DMD) Processing in Contrast to Permanent Mold Castingcitations
- 2018Connected Process Design for Hot Working of a Creep-Resistant Mg–4Al–2Ba–2Ca Alloy (ABaX422)citations
- 2018Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D)citations
- 2018Review on Hot Working Behavior and Strength of Calcium‐Containing Magnesium Alloyscitations
- 2017Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloycitations
- 2017High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloycitations
Places of action
Organizations | Location | People |
---|
article
Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloy
Abstract
The occurrence of dynamic recrystallization (DRX) and its effect on the evolution of texture during uniaxial compression of a creep-resistant cast Mg-4Al-2Ba-2Ca alloy in the temperature range of 260-500 °C and strain rate range of 0.0003-10 s<sup>-1</sup> has been studied using transmission electron microscopy and electron backscatter diffraction techniques with a view to understand its mechanism. For this purpose, a processing map has been developed for this alloy, which revealed two domains of DRX in the temperature and strain rate ranges of: (1) 300-390 °C/0.0003-0.001 s<sup>-1</sup> and (2) 400-500 °C/0.0003-0.5 s<sup>-1</sup>. In Domain 1, DRX occurs by basal slip and recovery by dislocation climb, as indicated by the presence of planar slip bands and high dislocation density leading to tilt boundary formation and a low-intensity basal texture. On the other hand, DRX in Domain 2 occurs by second order pyramidal slip and recovery by cross-slip since the microstructure revealed tangled dislocation structure with twist boundaries and randomized texture. The high volume content of intermetallic phases Mg<sub>21</sub>Al<sub>3</sub>Ba<sub>2</sub> and (Al,Mg)<sub>2</sub>Ca eutectic phase is considered to be responsible for the observed hot deformation behavior.