People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dharmendra, Chalasani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Texture Evolution and Anisotropy of Plastic Flow in Hot Compression of Extruded ZK60-T5 Magnesium Alloy Plate
- 2018Effect of calcium on the hot working behavior of AZ31-1.5 vol.% nano-alumina composite prepared by disintegrated melt deposition (DMD) processingcitations
- 2018Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn alloycitations
- 2018Review on Hot Working Behavior and Strength of Calcium‐Containing Magnesium Alloyscitations
- 2017Optimization of thermo-mechanical processing for forging of newly developed creep-resistant magnesium alloy ABAX633citations
- 2017High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloycitations
- 2013High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Mapcitations
Places of action
Organizations | Location | People |
---|
article
Optimization of thermo-mechanical processing for forging of newly developed creep-resistant magnesium alloy ABAX633
Abstract
The compressive strength and creep resistance of cast Mg-6Al-3Ba-3Ca (ABaX633) alloy has been measured in the temperature range of 25 to 250 ℃, and compared with that of its predecessor ABaX422. The alloy is stronger and more creep-resistant than ABaX422, and exhibits only a small decrease of yield stress with temperature. The higher strength of ABaX633 is attributed to a larger volume fraction of intermetallic particles (Al, Mg)<sub>2</sub>Ca and Mg<sub>21</sub>A<sub>l3</sub>Ba<sub>2</sub> in its microstructure. Hot deformation mechanisms in ABaX633 have been characterized by developing a processing map in the temperature and strain rate ranges of 300 to 500 ℃ and 0.0003 to 10 s<sup>−</sup><sup>1</sup>. The processing map exhibits two workability domains in the temperature and strain rate ranges of: (1) 380 to 475 ℃ and 0.0003 to 0.003 s<sup>−1</sup>, and (2) 480–500 ℃ and 0.003 to 0.5 s<sup>−</sup><sup>1</sup>. The apparent activation energy values estimated in the above two domains (204 and 216 kJ/mol) are higher than that for lattice self-diffusion of Mg, which is attributed to the large back-stress that is caused by the intermetallic particles. Optimum condition for bulk working is 500 ℃ and 0.01 s<sup>−</sup><sup>1</sup> at which hot workability will be maximum. Flow instability is exhibited at lower temperatures and higher strain rates, as well as at higher temperatures and higher strain rates. The predictions of the processing map on the workability domains, as well as the instability regimes are fully validated by the forging of a rib-web (cup) shaped component under optimized conditions.