People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Liu, Jianhua
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Modeling Inclusion Formation during Solidification of Steel
Abstract
The formation of nonmetallic inclusions in the solidification process can essentially influence the properties of steels. Computational simulation provides an effective and valuable method to study the process due to the difficulty of online investigation. This paper reviews the modeling work of inclusion formation during the solidification of steel. Microsegregation and inclusion formation thermodynamics and kinetics are first introduced, which are the fundamentals to simulate the phenomenon in the solidification process. Next, the thermodynamic and kinetic models coupled with microsegregation dedicated to inclusion formation are briefly described and summarized before the development and future expectations are discussed.