Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

You, Dali

  • Google
  • 5
  • 8
  • 72

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024The simple microsegregation model for steel considering MnS formation in the liquid and solid phases3citations
  • 2021Simulation of the Refining Process of Ultra-Low Carbon (ULC) Steel1citations
  • 2021Influence of Slag Viscosity and Composition on the Inclusion Content in Steel14citations
  • 2020Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extraction7citations
  • 2017Modeling Inclusion Formation during Solidification of Steel47citations

Places of action

Chart of shared publication
Bernhard, Christian
5 / 53 shared
Michelic, Susanne
4 / 27 shared
Bernhard, Michael Christian
1 / 18 shared
Viertauer, Andreas
1 / 5 shared
Linzer, Bernd
1 / 3 shared
Mayerhofer, Alexander
2 / 4 shared
Presoly, Peter
2 / 25 shared
Liu, Jianhua
1 / 2 shared
Chart of publication period
2024
2021
2020
2017

Co-Authors (by relevance)

  • Bernhard, Christian
  • Michelic, Susanne
  • Bernhard, Michael Christian
  • Viertauer, Andreas
  • Linzer, Bernd
  • Mayerhofer, Alexander
  • Presoly, Peter
  • Liu, Jianhua
OrganizationsLocationPeople

article

Modeling Inclusion Formation during Solidification of Steel

  • Bernhard, Christian
  • You, Dali
  • Michelic, Susanne
  • Presoly, Peter
  • Liu, Jianhua
Abstract

The formation of nonmetallic inclusions in the solidification process can essentially influence the properties of steels. Computational simulation provides an effective and valuable method to study the process due to the difficulty of online investigation. This paper reviews the modeling work of inclusion formation during the solidification of steel. Microsegregation and inclusion formation thermodynamics and kinetics are first introduced, which are the fundamentals to simulate the phenomenon in the solidification process. Next, the thermodynamic and kinetic models coupled with microsegregation dedicated to inclusion formation are briefly described and summarized before the development and future expectations are discussed.

Topics
  • inclusion
  • simulation
  • steel
  • solidification