People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prasad, Yellapregada Venkata Rama Krishna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2020Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD)citations
- 2019High Temperature Deformation Behavior and Processing Maps of AZ31 Alloy Deformed in Tension versus Compression
- 2019Texture Evolution and Anisotropy of Plastic Flow in Hot Compression of Extruded ZK60-T5 Magnesium Alloy Plate
- 2018Effect of calcium on the hot working behavior of AZ31-1.5 vol.% nano-alumina composite prepared by disintegrated melt deposition (DMD) processingcitations
- 2018Enhancement of Strength and Hot Workability of AZX312 Magnesium Alloy by Disintegrated Melt Deposition (DMD) Processing in Contrast to Permanent Mold Castingcitations
- 2018Connected Process Design for Hot Working of a Creep-Resistant Mg–4Al–2Ba–2Ca Alloy (ABaX422)citations
- 2018Review on Hot Working Behavior and Strength of Calcium‐Containing Magnesium Alloyscitations
- 2017Optimization of thermo-mechanical processing for forging of newly developed creep-resistant magnesium alloy ABAX633citations
- 2017Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloycitations
- 2017High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloycitations
- 2013High Temperature Deformation and Microstructural Features of TXA321 Magnesium Alloy: Correlations with Processing Mapcitations
- 2012Hot Deformation Mechanisms in AZ31 Magnesium Alloy Extruded at Different Temperaturescitations
- 2009Hot workability, microstructural control and rate-controlling mechanisms in cast-homogenized AZ31 magnesium alloycitations
- 2007Hot deformation mechanisms and microstructural control in high-temperature extruded AZ31 magnesium alloycitations
- 2006Enhancement of workability in AZ31 alloy-processing maps: Part I, cast materialcitations
Places of action
Organizations | Location | People |
---|
article
High temperature strength and hot working technology for As-cast Mg-1Zn-1Ca (ZX11) alloy
Abstract
Cast Mg-1Zn-1Ca alloy (ZX11) has been tested to evaluate its compressive strength between 25 °C and 250 °C, and workability in the range of 260-500 °C. The ultimate compressive strength of this alloy is about 30% higher than that of creep-resistant alloy Mg-3Sn-2Ca (TX32) between 25 °C and 200 °C, and exhibits a plateau between 100 °C and 175 °C, similar to TX32. This is attributed to Mg<sub>2</sub>Ca particles present at grain boundaries that reduce their sliding. The processing map, developed between 260 and 420 °C in the strain rate limits of 0.0003 s<sup>-1</sup> to 1 s<sup>-1</sup>, exhibited two domains in the ranges: (1) 280-330 °C and 0.0003-0.01 s<sup>-1</sup> and (2) 330-400 °C and 0.0003-0.1 s<sup>-1</sup>. In these domains, dynamic recrystallization occurs, with basal slip dominating in the first domain and prismatic slip in the second, while the recovery mechanism being climb of edge dislocations in both. The activation energy estimated using standard kinetic rate equation is 191 kJ/mol, which is higher than the value for lattice self-diffusion in magnesium indicating that a large back stress is created by the presence of Ca<sub>2</sub>Mg<sub>6</sub>Zn<sub>3 </sub>intermetallic particles in the matrix. It is recommended that the alloy be best processed at 380 °C and 0.1 s<sup>-1</sup> at which prismatic slip is favored due to Zn addition. At higher strain rates, the alloy exhibits flow instability and adiabatic shear band formation at <340 °C while flow localization and cracking at grain boundaries occurs at temperatures >400 °C.