People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wenzl, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Ultrafine-grained austenitic stainless steels X4CrNi18-12 and X8CrMnNi19-6-3 produced by accumulative roll bonding
Abstract
<jats:p>Austenitic stainless steels X4CrNi18-12 and X8CrMnNi19-6-3 were processed by accumulative roll bonding (ARB). Both materials show an extremely high yield strength of 1.25 GPa accompanied by a satisfactory elongation to failure of up to 14% and a positive strain rate sensitivity after two ARB cycles. The strain-hardening rate of the austenitic steels reveals a stabilization of the stress-strain behavior during tensile testing. Especially for X8CrMnNi19-6-3, which has an elevated manganese content of 6.7 wt.%, necking is prevented up to comparatively high plastic strains. Microstructural investigations showed that the microstructure is separated into ultrafine-grained channel like areas and relatively larger grains where pronounced nano-twinning and martensite formation is observed.</jats:p>