People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zegan, Georgeta
Grigore T. Popa University of Medicine and Pharmacy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Mechanical Properties and Wear Resistance of Biodegradable ZnMgY Alloycitations
- 2024Corrosion Behavior and Mechanical Properties of Zn–Ti Alloys as Biodegradable Materialscitations
- 2023Analysis of Degradation Products of Biodegradable ZnMgY Alloycitations
- 2023Microstructure, Shape Memory Effect, Chemical Composition and Corrosion Resistance Performance of Biodegradable FeMnSi-Al Alloycitations
- 2023Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi–Ag Shape Memory Alloyscitations
- 2022In-Vitro Analysis of FeMn-Si Smart Biodegradable Alloycitations
- 2020Surface Analysis of 3D (SLM) Co–Cr–W Dental Metallic Materialscitations
- 2018Electrochemical Behavior of Biodegradable FeMnSi–MgCa Alloycitations
Places of action
Organizations | Location | People |
---|
article
Mechanical Properties and Wear Resistance of Biodegradable ZnMgY Alloy
Abstract
<jats:p>Biodegradable metallic materials are gaining attention for medical applications in short-term implants (15–500 days) because of their good mechanical properties, biocompatibility, and generalized corrosion. Most medical applications involve implant wear processes, particularly for bone fractures. Parallelepipedic specimens (dimensions 50 mm × 10 mm × 3 mm) were obtained by cutting the hot-rolled material processed from cast ingots of ZnMgY. To test the tribological performance of these stationary specimens, they were placed at the upper point of the machine’s tribological contact. The rotating lower disk of the AMSLER machine (AMSLER & Co., Schaffhouse, Switzerland) is manufactured from AISI 52100 bearing steel with a 62–65 HRC hardness and a diameter of 59 mm both radially and axially. Frictional torque is the parameter that is measured. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to analyze the worn areas. The material behavior in the normal and wear states upon immersion in simulated body fluid (SBF) was evaluated.</jats:p>