Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schrad, Caleb Matthew

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Study of Mechanical Properties, Microstructure, and Residual Stresses of AISI 304/304L Stainless Steel Submerged Arc Weld for Spent Fuel Dry Storage Systems3citations

Places of action

Chart of shared publication
Howard, Robert
1 / 2 shared
Miller, Roger G.
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Howard, Robert
  • Miller, Roger G.
OrganizationsLocationPeople

article

Study of Mechanical Properties, Microstructure, and Residual Stresses of AISI 304/304L Stainless Steel Submerged Arc Weld for Spent Fuel Dry Storage Systems

  • Schrad, Caleb Matthew
  • Howard, Robert
  • Miller, Roger G.
Abstract

<jats:p>The confinement boundaries of spent nuclear fuel (SNF) canisters are typically fusion welded. Welded microstructures, strain hardening, and residual stresses combined with a chemically aggressive, chloride-rich environment led to concerns that the welded canister may be susceptible to chloride-induced stress corrosion cracking (CISCC). A comprehensive understanding of the modification of stainless steel (SS) metallurgical and mechanical properties by fusion welding could accelerate the predictive analysis of CISCC susceptibility. This paper describes a submerged arc welding (SAW) procedure that was developed and qualified on 12.7 mm (0.5 in.) thick AISI 304/304L SS to produce joints in a way similar to actual SNF canister manufacturing. This procedure has the potential to reduce the production cost and weld CISCC susceptibility by using fewer welding passes and lower heat input than current industrial applications. Global and local mechanical behaviors and properties, as well as residual stress distributions on the welded joint, were studied. The results indicate that hardness values in the fusion zone (FZ) and heat-affected zone (HAZ) are slightly higher than that of the base metal. Strain localization was presented in the HAZ before the tensile stress reached its maximum value, and then it shifted to the FZ. The specimen finally broke in the FZ. High tensile residual stresses exhibited in the FZ and the nearby HAZ suggest the highest CISCC-susceptible spots. The maximum tensile residual stresses were along the welding direction, indicating that if cracks occur, they would be perpendicular to the welding direction. This study involved developing and qualifying a SAW procedure for SNF canister production. The new procedure yielded cost savings (SAW working efficiency increased by about 80%), improved mechanical properties, and presented moderate residual stresses. Analysis revealed that the welded joint’s low-stress and high-stress damage assessments may be affected by shifts in the strain localization spot under loading.</jats:p>

Topics
  • microstructure
  • stainless steel
  • crack
  • hardness
  • susceptibility
  • stress corrosion