People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brewer, Luke N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Effect of Microstructure on Corrosion Behavior of Cold Sprayed Aluminum Alloy 5083citations
- 2023Design and Characterization of Innovative Gas-Atomized Al-Si-Cu-Mg Alloys for Additive Manufacturingcitations
- 2023A Comparison of Solidification Structures and Submicroscale Cellular Segregation in Rapidly Solidified Stainless Steels Produced via Two-Piston Splat Quenching and Laser Powder Bed Fusion
- 2021The Effect of Anodization on the Mechanical Properties of AA6061 Produced by Additive Friction Stir-Depositioncitations
- 2020Neutron Diffraction Analysis of Residual Strain in High-Pressure Die Cast A383 Engine Blockscitations
Places of action
Organizations | Location | People |
---|
article
Design and Characterization of Innovative Gas-Atomized Al-Si-Cu-Mg Alloys for Additive Manufacturing
Abstract
Metallic powders are widely utilized as feedstock materials in metal additive manufacturing (MAM). However, only a limited number of alloys can currently be processed using these technologies, with most of them being casting alloys. The objective of this study is to investigate novel aluminum alloys produced via a close-coupled gas atomizer (CCGA) by adding an increasing amount of copper (4, 8, and 20 wt%) to an AlSi10Mg alloy. The obtained powders were fully characterized to evaluate the effect of copper, a well-established strengthener for aluminum alloys, in order to correlate the obtained hardness to the powder phase composition and microstructure. In particular, a dendritic microstructure was observed in all alloys, and, as the copper content was increased, the size of the secondary dendrite arm spacing (SDAS) decreased progressively. Consequently, the hardness measured on the powder cross-section linearly increased with the copper content, and the hardness value of 185 ± 13 HV of the AlCu20Si10Mg composition was found to be twice that of the AlSi10Mg alloy (88 ± 5 HV).