People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Daves, Werner
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Experimental and Numerical Visualisation of Subsurface Rail Deformation in a Full-Scale Wheel–Rail Test Rigcitations
- 2020Stress relaxation through thermal crack formation in CVD TiCN coatings grown on WC-Co with different Co contentscitations
- 2019Investigation of deformation mechanisms in manganese steel crossings using FE modelscitations
- 2016A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contactcitations
Places of action
Organizations | Location | People |
---|
article
Experimental and Numerical Visualisation of Subsurface Rail Deformation in a Full-Scale Wheel–Rail Test Rig
Abstract
To tackle the problem of various types of rail damage, such as rolling contact fatigue (RCF) or wear, a profound knowledge of the occurring mechanisms is necessary. This paper presents a newly developed full-scale test rig experiment that involves inserting softer pins into the rail head. These tests help deepen our understanding of shear deformation in rail steels. Furthermore, a finite element (FE) simulation approach is introduced that can be related to the test rig experiments. With these experiments, in combination with the FE simulation, valuable information regarding the plastic deformation can be obtained. This methodology allows predictions regarding a rail’s material behaviour during cyclic wheel loading. Moreover, it enables an effective and rapid qualitative material assessment, reducing the costs of expensive and time-consuming experiments.