People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malopheyev, Sergey
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
The evolution of abnormal grains during the heating stage of a post-weld solution treatment in a friction-stir-welded 2519 aluminium alloy
Abstract
This work presents an in-depth investigation of the early stages of abnormal grain growth (AGG) in a friction-stir-welded (FSWed) 2519-T820 aluminium alloy. Microstructural evolutions, which occurred during the heating stage of a solution heat treatment (SHT), were studied. It was found that the welded materials underwent a complex sequence of precipitation phenomena, which eventually led to AGG. The evolution of precipitates was found to be heavily dependent on the FSW temperature condition. In a weld produced with a low-heat input, a significant portion of the precipitates were retained in the stir zone after FSW and then underwent coarsening and a subsequent dissolution during the annealing that followed. This led to a reduction in precipitation-pinning forces and thus promoted rapid grain coarsening. In a weld produced with a high-heat input, the initial precipitates were completely dissolved during the FSW, owing to the higher temperature, and then partially re-precipitated during the heating stage of the post-weld heat treatment. Due to the fine-grain structure of the stir zone, re-precipitation typically occurred at grain boundaries, thus promoting significant thermal stability. However, at temperatures approaching the SHT temperature, the new precipitates coarsened and then dissolved, resulting in AGG.