People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tize Mha, Pierre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Interpolation and Extrapolation Performance Measurement of Analytical and ANN-Based Flow Laws for Hot Deformation Behavior of Medium Carbon Steelcitations
- 2023Interpolation and Extrapolation Performance Measurement of Analytical and ANN-Based Flow Laws for Hot Deformation Behavior of Medium Carbon Steelcitations
- 2022Efficient implementation of non-linear flow law using neural network into the Abaqus Explicit FEM codecitations
Places of action
Organizations | Location | People |
---|
article
Interpolation and Extrapolation Performance Measurement of Analytical and ANN-Based Flow Laws for Hot Deformation Behavior of Medium Carbon Steel
Abstract
<jats:p>In the present work, a critical analysis of the most-commonly used analytical models and recently introduced ANN-based models was performed to evaluate their predictive accuracy within and outside the experimental interval used to generate them. The high-temperature deformation behavior of a medium carbon steel was studied over a wide range of strains, strain rates, and temperatures using hot compression tests on a Gleeble-3800. The experimental flow curves were modeled using the Johnson–Cook, Modified-Zerilli–Armstrong, Hansel–Spittel, Arrhenius, and PTM models, as well as an ANN model. The mean absolute relative error and root-mean-squared error values were used to quantify the predictive accuracy of the models analyzed. The results indicated that the Johnson–Cook and Modified-Zerilli–Armstrong models had a significant error, while the Hansel–Spittel, PTM, and Arrhenius models were able to predict the behavior of this alloy. The ANN model showed excellent agreement between the predicted and experimental flow curves, with an error of less than 0.62%. To validate the performance, the ability to interpolate and extrapolate the experimental data was also tested. The Hansel–Spittel, PTM, and Arrhenius models showed good interpolation and extrapolation capabilities. However, the ANN model was the most-powerful of all the models.</jats:p>